Cargando…
Object detection networks and augmented reality for cellular detection in fluorescence microscopy
Object detection networks are high-performance algorithms famously applied to the task of identifying and localizing objects in photography images. We demonstrate their application for the classification and localization of cells in fluorescence microscopy by benchmarking four leading object detecti...
Autores principales: | Waithe, Dominic, Brown, Jill M., Reglinski, Katharina, Diez-Sevilla, Isabel, Roberts, David, Eggeling, Christian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Rockefeller University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7659718/ https://www.ncbi.nlm.nih.gov/pubmed/32854116 http://dx.doi.org/10.1083/jcb.201903166 |
Ejemplares similares
-
Challenges of Using Expansion Microscopy for Super‐resolved Imaging of Cellular Organelles
por: Büttner, Maximilian, et al.
Publicado: (2020) -
Super-resolution Microscopy Reveals Compartmentalization of Peroxisomal Membrane Proteins
por: Galiani, Silvia, et al.
Publicado: (2016) -
Deep neural network automated segmentation of cellular structures in volume electron microscopy
por: Gallusser, Benjamin, et al.
Publicado: (2022) -
Peroxisomal Import Reduces the Proapoptotic Activity of Deubiquitinating Enzyme USP2
por: Reglinski, Katharina, et al.
Publicado: (2015) -
Label-retention expansion microscopy
por: Shi, Xiaoyu, et al.
Publicado: (2021)