Cargando…
Chaotic-map based authenticated security framework with privacy preservation for remote point-of-care
The challenge of COVID-19 has become more prevalent across the world. It is highly demanding an intelligent strategy to outline the precaution measures until the clinical trials find a successful vaccine. With technological advancement, Wireless Multimedia Sensor Networks (WMSNs) has extended its si...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7659916/ https://www.ncbi.nlm.nih.gov/pubmed/33204211 http://dx.doi.org/10.1007/s11042-020-10134-x |
_version_ | 1783608894894899200 |
---|---|
author | Deebak, B. D. Al-Turjman, Fadi Nayyar, Anand |
author_facet | Deebak, B. D. Al-Turjman, Fadi Nayyar, Anand |
author_sort | Deebak, B. D. |
collection | PubMed |
description | The challenge of COVID-19 has become more prevalent across the world. It is highly demanding an intelligent strategy to outline the precaution measures until the clinical trials find a successful vaccine. With technological advancement, Wireless Multimedia Sensor Networks (WMSNs) has extended its significant role in the development of remote medical point-of-care (RM-PoC). WMSN is generally located on a communication device to sense the vital signaling information that may periodically be transmitted to remote intelligent pouch This modern remote system finds a suitable professional system to inspect the environment condition remotely in order to facilitate the intelligent process. In the past, the RM-PoC has gained more attention for the exploitation of real-time monitoring, treatment follow-up, and action report generation. Even though it has additional advantages in comparison with conventional systems, issues such as security and privacy are seriously considered to protect the modern system information over insecure public networks. Therefore, this study presents a novel Single User Sign-In (SUSI) Mechanism that makes certain of privacy preservation to ensure better protection of multimedia data. It can be achieved over the negotiation of a shared session-key to perform encryption or decryption of sensitive data during the authentication phase. To comply with key agreement properties such as appropriate mutual authentication and secure session key-agreement, a proposed system design is incorporated into the chaotic-map. The above assumption claims that it can not only achieve better security efficiencies but also can moderate the computation, communication, and storage cost of some intelligent systems as compared to elliptic-curve cryptography or RSA. Importantly, in order to offer untraceability and user anonymity, the RM-PoC acquires dynamic identities from proposed SUSI. Moreover, the security efficiencies of proposed SUSI are demonstrated using informal and formal analysis of the real-or-random (RoR) model. Lastly, a simulation study using NS3 is extensively conducted to analyze the communication metrics such as transmission delay, throughput rate, and packet delivery ratio that demonstrates the significance of the proposed SUSI scheme. |
format | Online Article Text |
id | pubmed-7659916 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Springer US |
record_format | MEDLINE/PubMed |
spelling | pubmed-76599162020-11-13 Chaotic-map based authenticated security framework with privacy preservation for remote point-of-care Deebak, B. D. Al-Turjman, Fadi Nayyar, Anand Multimed Tools Appl 1157T: Intelligent Multimedia Networks The challenge of COVID-19 has become more prevalent across the world. It is highly demanding an intelligent strategy to outline the precaution measures until the clinical trials find a successful vaccine. With technological advancement, Wireless Multimedia Sensor Networks (WMSNs) has extended its significant role in the development of remote medical point-of-care (RM-PoC). WMSN is generally located on a communication device to sense the vital signaling information that may periodically be transmitted to remote intelligent pouch This modern remote system finds a suitable professional system to inspect the environment condition remotely in order to facilitate the intelligent process. In the past, the RM-PoC has gained more attention for the exploitation of real-time monitoring, treatment follow-up, and action report generation. Even though it has additional advantages in comparison with conventional systems, issues such as security and privacy are seriously considered to protect the modern system information over insecure public networks. Therefore, this study presents a novel Single User Sign-In (SUSI) Mechanism that makes certain of privacy preservation to ensure better protection of multimedia data. It can be achieved over the negotiation of a shared session-key to perform encryption or decryption of sensitive data during the authentication phase. To comply with key agreement properties such as appropriate mutual authentication and secure session key-agreement, a proposed system design is incorporated into the chaotic-map. The above assumption claims that it can not only achieve better security efficiencies but also can moderate the computation, communication, and storage cost of some intelligent systems as compared to elliptic-curve cryptography or RSA. Importantly, in order to offer untraceability and user anonymity, the RM-PoC acquires dynamic identities from proposed SUSI. Moreover, the security efficiencies of proposed SUSI are demonstrated using informal and formal analysis of the real-or-random (RoR) model. Lastly, a simulation study using NS3 is extensively conducted to analyze the communication metrics such as transmission delay, throughput rate, and packet delivery ratio that demonstrates the significance of the proposed SUSI scheme. Springer US 2020-11-12 2021 /pmc/articles/PMC7659916/ /pubmed/33204211 http://dx.doi.org/10.1007/s11042-020-10134-x Text en © Springer Science+Business Media, LLC, part of Springer Nature 2020 This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. |
spellingShingle | 1157T: Intelligent Multimedia Networks Deebak, B. D. Al-Turjman, Fadi Nayyar, Anand Chaotic-map based authenticated security framework with privacy preservation for remote point-of-care |
title | Chaotic-map based authenticated security framework with privacy preservation for remote point-of-care |
title_full | Chaotic-map based authenticated security framework with privacy preservation for remote point-of-care |
title_fullStr | Chaotic-map based authenticated security framework with privacy preservation for remote point-of-care |
title_full_unstemmed | Chaotic-map based authenticated security framework with privacy preservation for remote point-of-care |
title_short | Chaotic-map based authenticated security framework with privacy preservation for remote point-of-care |
title_sort | chaotic-map based authenticated security framework with privacy preservation for remote point-of-care |
topic | 1157T: Intelligent Multimedia Networks |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7659916/ https://www.ncbi.nlm.nih.gov/pubmed/33204211 http://dx.doi.org/10.1007/s11042-020-10134-x |
work_keys_str_mv | AT deebakbd chaoticmapbasedauthenticatedsecurityframeworkwithprivacypreservationforremotepointofcare AT alturjmanfadi chaoticmapbasedauthenticatedsecurityframeworkwithprivacypreservationforremotepointofcare AT nayyaranand chaoticmapbasedauthenticatedsecurityframeworkwithprivacypreservationforremotepointofcare |