Cargando…

Control of the Photo-Isomerization Mechanism in 3H-Naphthopyrans to Prevent Formation of Unwanted Long-Lived Photoproducts

In the photochromic reactions of 3H-naphthopyrans, two colored isomers TC (transoid-cis) and TT (transoid-trans) are formed. In terms of optimized photo-switchable materials, synthetic efforts are nowadays evolving toward developing 3H-naphthopyran derivatives that would not be able to photoproduce...

Descripción completa

Detalles Bibliográficos
Autores principales: Brazevic, Sabina, Nizinski, Stanisław, Sliwa, Michel, Abe, Jiro, Rode, Michał F., Burdzinski, Gotard
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7659934/
https://www.ncbi.nlm.nih.gov/pubmed/33105695
http://dx.doi.org/10.3390/ijms21217825
Descripción
Sumario:In the photochromic reactions of 3H-naphthopyrans, two colored isomers TC (transoid-cis) and TT (transoid-trans) are formed. In terms of optimized photo-switchable materials, synthetic efforts are nowadays evolving toward developing 3H-naphthopyran derivatives that would not be able to photoproduce the long-living transoid-trans, TT, photoproduct. The substitution with a methoxy group at position 10 results in significant reduction of the TT isomer formation yield. The TC photophysics responsible for TT suppression were revealed here using a combination of multi-scale time resolved absorption UV-vis spectroscopy and ab initio calculations. The substitution changes the TC excited-state potential energy landscape, the bicycle-pedal isomerization path is favored over the rotation around a single double bond. The bicycle-pedal path is aborted in halfway to TT formation due to S(1)→S(0) internal conversion populating back the TC species in the ground electronic state. This is validated by a shorter TC S(1) state lifetime for methoxy derivative in comparison to that of the parent-unsubstituted compound (0.47 ± 0.05 ps vs. 0.87 ± 0.09 ps) in cyclohexane.