Cargando…

The PRESSURE score to predict decompressive craniectomy after aneurysmal subarachnoid haemorrhage

The prognosis of patients with aneurysmal subarachnoid haemorrhage requiring decompressive craniectomy is usually poor. Proper selection and early performing of decompressive craniectomy might improve the patients’ outcome. We aimed at developing a risk score for prediction of decompressive craniect...

Descripción completa

Detalles Bibliográficos
Autores principales: Jabbarli, Ramazan, Darkwah Oppong, Marvin, Roelz, Roland, Pierscianek, Daniela, Shah, Mukesch, Dammann, Philipp, Scheiwe, Christian, Kaier, Klaus, Wrede, Karsten H, Beck, Jürgen, Sure, Ulrich
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7660044/
https://www.ncbi.nlm.nih.gov/pubmed/33215084
http://dx.doi.org/10.1093/braincomms/fcaa134
Descripción
Sumario:The prognosis of patients with aneurysmal subarachnoid haemorrhage requiring decompressive craniectomy is usually poor. Proper selection and early performing of decompressive craniectomy might improve the patients’ outcome. We aimed at developing a risk score for prediction of decompressive craniectomy after aneurysmal subarachnoid haemorrhage. All consecutive aneurysmal subarachnoid haemorrhage cases treated at the University Hospital of Essen between January 2003 and June 2016 (test cohort) and the University Medical Center Freiburg between January 2005 and December 2012 (validation cohort) were eligible for this study. Various parameters collected within 72 h after aneurysmal subarachnoid haemorrhage were evaluated through univariate and multivariate analyses to predict separately primary (PrimDC) and secondary decompressive craniectomy (SecDC). The final analysis included 1376 patients. The constructed risk score included the following parameters: intracerebral (‘Parenchymal’) haemorrhage (1 point), ‘Rapid’ vasospasm on angiography (1 point), Early cerebral infarction (1 point), aneurysm Sac > 5 mm (1 point), clipping (‘Surgery’, 1 point), age Under 55 years (2 points), Hunt and Hess grade ≥ 4 (‘Reduced consciousness’, 1 point) and External ventricular drain (1 point). The PRESSURE score (0–9 points) showed high diagnostic accuracy for the prediction of PrimDC and SecDC in the test (area under the curve = 0.842/0.818) and validation cohorts (area under the curve = 0.903/0.823), respectively. 63.7% of the patients scoring ≥6 points required decompressive craniectomy (versus 12% for the PRESSURE < 6 points, P < 0.0001). In the subgroup of the patients with the PRESSURE ≥6 points and absence of dilated/fixed pupils, PrimDC within 24 h after aneurysmal subarachnoid haemorrhage was independently associated with lower risk of unfavourable outcome (modified Rankin Scale >3 at 6 months) than in individuals with later or no decompressive craniectomy (P < 0.0001). Our risk score was successfully validated as reliable predictor of decompressive craniectomy after aneurysmal subarachnoid haemorrhage. The PRESSURE score might present a background for a prospective randomized clinical trial addressing the utility of early prophylactic decompressive craniectomy in aneurysmal subarachnoid haemorrhage.