Cargando…
Unsupervised Dark-Channel Attention-Guided CycleGAN for Single-Image Dehazing
In this paper, we propose a new unsupervised attention-based cycle generative adversarial network to solve the problem of single-image dehazing. The proposed method adds an attention mechanism that can dehaze different areas on the basis of the previous generative adversarial network (GAN) dehazing...
Autores principales: | Chen, Jiahao, Wu, Chong, Chen, Hu, Cheng, Peng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7660183/ https://www.ncbi.nlm.nih.gov/pubmed/33113915 http://dx.doi.org/10.3390/s20216000 |
Ejemplares similares
-
Enhanced CycleGAN Network with Adaptive Dark Channel Prior for Unpaired Single-Image Dehazing
por: Xu, Yijun, et al.
Publicado: (2023) -
ADE-CycleGAN: A Detail Enhanced Image Dehazing CycleGAN Network
por: Yan, Bingnan, et al.
Publicado: (2023) -
Comparative analysis of CycleGAN and AttentionGAN on face aging application
por: Sharma, Neha, et al.
Publicado: (2022) -
Unsupervised segmentation and quantification of COVID-19 lesions on computed Tomography scans using CycleGAN
por: Connell, Marc, et al.
Publicado: (2022) -
CycleGAN for interpretable online EMT compensation
por: Krumb, Henry, et al.
Publicado: (2021)