Cargando…
New Chemical Probe Targeting Bacterial NAD Kinase
Nicotinamide adenine dinucleotide (NAD) kinases are essential and ubiquitous enzymes involved in the tight regulation of NAD/nicotinamide adenine dinucleotide phosphate (NADP) levels in many metabolic pathways. Consequently, they represent promising therapeutic targets in cancer and antibacterial tr...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7660225/ https://www.ncbi.nlm.nih.gov/pubmed/33105870 http://dx.doi.org/10.3390/molecules25214893 |
_version_ | 1783608966806241280 |
---|---|
author | Clément, David A. Leseigneur, Clarisse Gelin, Muriel Coelho, Dylan Huteau, Valérie Lionne, Corinne Labesse, Gilles Dussurget, Olivier Pochet, Sylvie |
author_facet | Clément, David A. Leseigneur, Clarisse Gelin, Muriel Coelho, Dylan Huteau, Valérie Lionne, Corinne Labesse, Gilles Dussurget, Olivier Pochet, Sylvie |
author_sort | Clément, David A. |
collection | PubMed |
description | Nicotinamide adenine dinucleotide (NAD) kinases are essential and ubiquitous enzymes involved in the tight regulation of NAD/nicotinamide adenine dinucleotide phosphate (NADP) levels in many metabolic pathways. Consequently, they represent promising therapeutic targets in cancer and antibacterial treatments. We previously reported diadenosine derivatives as NAD kinase inhibitors with bactericidal activities on Staphylococcus aureus. Among them, one compound (namely NKI1) was found effective in vivo in a mouse infection model. With the aim to gain detailed knowledge about the selectivity and mechanism of action of this lead compound, we planned to develop a chemical probe that could be used in affinity-based chemoproteomic approaches. Here, we describe the first functionalized chemical probe targeting a bacterial NAD kinase. Aminoalkyl functional groups were introduced on NKI1 for further covalent coupling to an activated Sepharose(TM) matrix. Inhibitory properties of functionalized NKI1 derivatives together with X-ray characterization of their complexes with the NAD kinase led to identify candidate compounds that are amenable to covalent coupling to a matrix. |
format | Online Article Text |
id | pubmed-7660225 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-76602252020-11-13 New Chemical Probe Targeting Bacterial NAD Kinase Clément, David A. Leseigneur, Clarisse Gelin, Muriel Coelho, Dylan Huteau, Valérie Lionne, Corinne Labesse, Gilles Dussurget, Olivier Pochet, Sylvie Molecules Article Nicotinamide adenine dinucleotide (NAD) kinases are essential and ubiquitous enzymes involved in the tight regulation of NAD/nicotinamide adenine dinucleotide phosphate (NADP) levels in many metabolic pathways. Consequently, they represent promising therapeutic targets in cancer and antibacterial treatments. We previously reported diadenosine derivatives as NAD kinase inhibitors with bactericidal activities on Staphylococcus aureus. Among them, one compound (namely NKI1) was found effective in vivo in a mouse infection model. With the aim to gain detailed knowledge about the selectivity and mechanism of action of this lead compound, we planned to develop a chemical probe that could be used in affinity-based chemoproteomic approaches. Here, we describe the first functionalized chemical probe targeting a bacterial NAD kinase. Aminoalkyl functional groups were introduced on NKI1 for further covalent coupling to an activated Sepharose(TM) matrix. Inhibitory properties of functionalized NKI1 derivatives together with X-ray characterization of their complexes with the NAD kinase led to identify candidate compounds that are amenable to covalent coupling to a matrix. MDPI 2020-10-22 /pmc/articles/PMC7660225/ /pubmed/33105870 http://dx.doi.org/10.3390/molecules25214893 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Clément, David A. Leseigneur, Clarisse Gelin, Muriel Coelho, Dylan Huteau, Valérie Lionne, Corinne Labesse, Gilles Dussurget, Olivier Pochet, Sylvie New Chemical Probe Targeting Bacterial NAD Kinase |
title | New Chemical Probe Targeting Bacterial NAD Kinase |
title_full | New Chemical Probe Targeting Bacterial NAD Kinase |
title_fullStr | New Chemical Probe Targeting Bacterial NAD Kinase |
title_full_unstemmed | New Chemical Probe Targeting Bacterial NAD Kinase |
title_short | New Chemical Probe Targeting Bacterial NAD Kinase |
title_sort | new chemical probe targeting bacterial nad kinase |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7660225/ https://www.ncbi.nlm.nih.gov/pubmed/33105870 http://dx.doi.org/10.3390/molecules25214893 |
work_keys_str_mv | AT clementdavida newchemicalprobetargetingbacterialnadkinase AT leseigneurclarisse newchemicalprobetargetingbacterialnadkinase AT gelinmuriel newchemicalprobetargetingbacterialnadkinase AT coelhodylan newchemicalprobetargetingbacterialnadkinase AT huteauvalerie newchemicalprobetargetingbacterialnadkinase AT lionnecorinne newchemicalprobetargetingbacterialnadkinase AT labessegilles newchemicalprobetargetingbacterialnadkinase AT dussurgetolivier newchemicalprobetargetingbacterialnadkinase AT pochetsylvie newchemicalprobetargetingbacterialnadkinase |