Cargando…

Phe-140 Determines the Catalytic Efficiency of Arylacetonitrilase from Alcaligenes faecalis

Arylacetonitrilase from Alcaligenes faecalis ATCC8750 (NitAF) hydrolyzes various arylacetonitriles to the corresponding carboxylic acids. A systematic strategy of amino acid residue screening through sequence alignment, followed by homology modeling and biochemical confirmation was employed to eluci...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Jung-Soo, Patel, Sanjay K. S., Tiwari, Manish K., Lai, Chunfen, Kumar, Anurag, Kim, Young Sin, Kalia, Vipin Chandra, Lee, Jung-Kul
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7660301/
https://www.ncbi.nlm.nih.gov/pubmed/33113984
http://dx.doi.org/10.3390/ijms21217859
Descripción
Sumario:Arylacetonitrilase from Alcaligenes faecalis ATCC8750 (NitAF) hydrolyzes various arylacetonitriles to the corresponding carboxylic acids. A systematic strategy of amino acid residue screening through sequence alignment, followed by homology modeling and biochemical confirmation was employed to elucidate the determinant of NitAF catalytic efficiency. Substituting Phe-140 in NitAF (wild-type) to Trp did not change the catalytic efficiency toward phenylacetonitrile, an arylacetonitrile. The mutants with nonpolar aliphatic amino acids (Ala, Gly, Leu, or Val) at location 140 had lower activity, and those with charged amino acids (Asp, Glu, or Arg) exhibited nearly no activity for phenylacetonitrile. Molecular modeling showed that the hydrophobic benzene ring at position 140 supports a mechanism in which the thiol group of Cys-163 carries out a nucleophilic attack on a cyanocarbon of the substrate. Characterization of the role of the Phe-140 residue demonstrated the molecular determinant for the efficient formation of arylcarboxylic acids.