Cargando…
A Random Matrix Theory Approach to Denoise Single-Cell Data
Single-cell technologies provide the opportunity to identify new cellular states. However, a major obstacle to the identification of biological signals is noise in single-cell data. In addition, single-cell data are very sparse. We propose a new method based on random matrix theory to analyze and de...
Autores principales: | Aparicio, Luis, Bordyuh, Mykola, Blumberg, Andrew J., Rabadan, Raul |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7660363/ https://www.ncbi.nlm.nih.gov/pubmed/33205104 http://dx.doi.org/10.1016/j.patter.2020.100035 |
Ejemplares similares
-
An Improved DOA Estimation Approach Using Coarray Interpolation and Matrix Denoising
por: Guo, Muran, et al.
Publicado: (2017) -
Benchmarking data-driven filtering for denoising of TCRpMHC single-cell data
por: Montemurro, Alessandro, et al.
Publicado: (2023) -
ECG Data Analysis with Denoising Approach and Customized CNNs
por: Mishra, Abhinav, et al.
Publicado: (2022) -
Normalizing and denoising protein expression data from droplet-based single cell profiling
por: Mulè, Matthew P., et al.
Publicado: (2022) -
Denoising the Denoisers: an independent evaluation of microbiome sequence error-correction approaches
por: Nearing, Jacob T., et al.
Publicado: (2018)