Cargando…
An Experiment on Ab Initio Discovery of Biological Knowledge from scRNA-Seq Data Using Machine Learning
Expectations of machine learning (ML) are high for discovering new patterns in high-throughput biological data, but most such practices are accustomed to relying on existing knowledge conditions to design experiments. Investigations of the power and limitation of ML in revealing complex patterns fro...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7660369/ https://www.ncbi.nlm.nih.gov/pubmed/33205121 http://dx.doi.org/10.1016/j.patter.2020.100071 |
_version_ | 1783608992710262784 |
---|---|
author | Shah, Najeebullah Li, Jiaqi Li, Fanhong Chen, Wenchang Gao, Haoxiang Chen, Sijie Hua, Kui Zhang, Xuegong |
author_facet | Shah, Najeebullah Li, Jiaqi Li, Fanhong Chen, Wenchang Gao, Haoxiang Chen, Sijie Hua, Kui Zhang, Xuegong |
author_sort | Shah, Najeebullah |
collection | PubMed |
description | Expectations of machine learning (ML) are high for discovering new patterns in high-throughput biological data, but most such practices are accustomed to relying on existing knowledge conditions to design experiments. Investigations of the power and limitation of ML in revealing complex patterns from data without the guide of existing knowledge have been lacking. In this study, we conducted systematic experiments on such ab initio knowledge discovery with ML methods on single-cell RNA-sequencing data of early embryonic development. Results showed that a strategy combining unsupervised and supervised ML can reveal major cell lineages with minimum involvement of prior knowledge or manual intervention, and the ab initio mining enabled a new discovery of human early embryonic cell differentiation. The study illustrated the feasibility, significance, and limitation of ab initio ML knowledge discovery on complex biological problems. |
format | Online Article Text |
id | pubmed-7660369 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-76603692020-11-16 An Experiment on Ab Initio Discovery of Biological Knowledge from scRNA-Seq Data Using Machine Learning Shah, Najeebullah Li, Jiaqi Li, Fanhong Chen, Wenchang Gao, Haoxiang Chen, Sijie Hua, Kui Zhang, Xuegong Patterns (N Y) Article Expectations of machine learning (ML) are high for discovering new patterns in high-throughput biological data, but most such practices are accustomed to relying on existing knowledge conditions to design experiments. Investigations of the power and limitation of ML in revealing complex patterns from data without the guide of existing knowledge have been lacking. In this study, we conducted systematic experiments on such ab initio knowledge discovery with ML methods on single-cell RNA-sequencing data of early embryonic development. Results showed that a strategy combining unsupervised and supervised ML can reveal major cell lineages with minimum involvement of prior knowledge or manual intervention, and the ab initio mining enabled a new discovery of human early embryonic cell differentiation. The study illustrated the feasibility, significance, and limitation of ab initio ML knowledge discovery on complex biological problems. Elsevier 2020-07-10 /pmc/articles/PMC7660369/ /pubmed/33205121 http://dx.doi.org/10.1016/j.patter.2020.100071 Text en © 2020 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Shah, Najeebullah Li, Jiaqi Li, Fanhong Chen, Wenchang Gao, Haoxiang Chen, Sijie Hua, Kui Zhang, Xuegong An Experiment on Ab Initio Discovery of Biological Knowledge from scRNA-Seq Data Using Machine Learning |
title | An Experiment on Ab Initio Discovery of Biological Knowledge from scRNA-Seq Data Using Machine Learning |
title_full | An Experiment on Ab Initio Discovery of Biological Knowledge from scRNA-Seq Data Using Machine Learning |
title_fullStr | An Experiment on Ab Initio Discovery of Biological Knowledge from scRNA-Seq Data Using Machine Learning |
title_full_unstemmed | An Experiment on Ab Initio Discovery of Biological Knowledge from scRNA-Seq Data Using Machine Learning |
title_short | An Experiment on Ab Initio Discovery of Biological Knowledge from scRNA-Seq Data Using Machine Learning |
title_sort | experiment on ab initio discovery of biological knowledge from scrna-seq data using machine learning |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7660369/ https://www.ncbi.nlm.nih.gov/pubmed/33205121 http://dx.doi.org/10.1016/j.patter.2020.100071 |
work_keys_str_mv | AT shahnajeebullah anexperimentonabinitiodiscoveryofbiologicalknowledgefromscrnaseqdatausingmachinelearning AT lijiaqi anexperimentonabinitiodiscoveryofbiologicalknowledgefromscrnaseqdatausingmachinelearning AT lifanhong anexperimentonabinitiodiscoveryofbiologicalknowledgefromscrnaseqdatausingmachinelearning AT chenwenchang anexperimentonabinitiodiscoveryofbiologicalknowledgefromscrnaseqdatausingmachinelearning AT gaohaoxiang anexperimentonabinitiodiscoveryofbiologicalknowledgefromscrnaseqdatausingmachinelearning AT chensijie anexperimentonabinitiodiscoveryofbiologicalknowledgefromscrnaseqdatausingmachinelearning AT huakui anexperimentonabinitiodiscoveryofbiologicalknowledgefromscrnaseqdatausingmachinelearning AT zhangxuegong anexperimentonabinitiodiscoveryofbiologicalknowledgefromscrnaseqdatausingmachinelearning AT shahnajeebullah experimentonabinitiodiscoveryofbiologicalknowledgefromscrnaseqdatausingmachinelearning AT lijiaqi experimentonabinitiodiscoveryofbiologicalknowledgefromscrnaseqdatausingmachinelearning AT lifanhong experimentonabinitiodiscoveryofbiologicalknowledgefromscrnaseqdatausingmachinelearning AT chenwenchang experimentonabinitiodiscoveryofbiologicalknowledgefromscrnaseqdatausingmachinelearning AT gaohaoxiang experimentonabinitiodiscoveryofbiologicalknowledgefromscrnaseqdatausingmachinelearning AT chensijie experimentonabinitiodiscoveryofbiologicalknowledgefromscrnaseqdatausingmachinelearning AT huakui experimentonabinitiodiscoveryofbiologicalknowledgefromscrnaseqdatausingmachinelearning AT zhangxuegong experimentonabinitiodiscoveryofbiologicalknowledgefromscrnaseqdatausingmachinelearning |