Cargando…

An Experiment on Ab Initio Discovery of Biological Knowledge from scRNA-Seq Data Using Machine Learning

Expectations of machine learning (ML) are high for discovering new patterns in high-throughput biological data, but most such practices are accustomed to relying on existing knowledge conditions to design experiments. Investigations of the power and limitation of ML in revealing complex patterns fro...

Descripción completa

Detalles Bibliográficos
Autores principales: Shah, Najeebullah, Li, Jiaqi, Li, Fanhong, Chen, Wenchang, Gao, Haoxiang, Chen, Sijie, Hua, Kui, Zhang, Xuegong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7660369/
https://www.ncbi.nlm.nih.gov/pubmed/33205121
http://dx.doi.org/10.1016/j.patter.2020.100071
_version_ 1783608992710262784
author Shah, Najeebullah
Li, Jiaqi
Li, Fanhong
Chen, Wenchang
Gao, Haoxiang
Chen, Sijie
Hua, Kui
Zhang, Xuegong
author_facet Shah, Najeebullah
Li, Jiaqi
Li, Fanhong
Chen, Wenchang
Gao, Haoxiang
Chen, Sijie
Hua, Kui
Zhang, Xuegong
author_sort Shah, Najeebullah
collection PubMed
description Expectations of machine learning (ML) are high for discovering new patterns in high-throughput biological data, but most such practices are accustomed to relying on existing knowledge conditions to design experiments. Investigations of the power and limitation of ML in revealing complex patterns from data without the guide of existing knowledge have been lacking. In this study, we conducted systematic experiments on such ab initio knowledge discovery with ML methods on single-cell RNA-sequencing data of early embryonic development. Results showed that a strategy combining unsupervised and supervised ML can reveal major cell lineages with minimum involvement of prior knowledge or manual intervention, and the ab initio mining enabled a new discovery of human early embryonic cell differentiation. The study illustrated the feasibility, significance, and limitation of ab initio ML knowledge discovery on complex biological problems.
format Online
Article
Text
id pubmed-7660369
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-76603692020-11-16 An Experiment on Ab Initio Discovery of Biological Knowledge from scRNA-Seq Data Using Machine Learning Shah, Najeebullah Li, Jiaqi Li, Fanhong Chen, Wenchang Gao, Haoxiang Chen, Sijie Hua, Kui Zhang, Xuegong Patterns (N Y) Article Expectations of machine learning (ML) are high for discovering new patterns in high-throughput biological data, but most such practices are accustomed to relying on existing knowledge conditions to design experiments. Investigations of the power and limitation of ML in revealing complex patterns from data without the guide of existing knowledge have been lacking. In this study, we conducted systematic experiments on such ab initio knowledge discovery with ML methods on single-cell RNA-sequencing data of early embryonic development. Results showed that a strategy combining unsupervised and supervised ML can reveal major cell lineages with minimum involvement of prior knowledge or manual intervention, and the ab initio mining enabled a new discovery of human early embryonic cell differentiation. The study illustrated the feasibility, significance, and limitation of ab initio ML knowledge discovery on complex biological problems. Elsevier 2020-07-10 /pmc/articles/PMC7660369/ /pubmed/33205121 http://dx.doi.org/10.1016/j.patter.2020.100071 Text en © 2020 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Shah, Najeebullah
Li, Jiaqi
Li, Fanhong
Chen, Wenchang
Gao, Haoxiang
Chen, Sijie
Hua, Kui
Zhang, Xuegong
An Experiment on Ab Initio Discovery of Biological Knowledge from scRNA-Seq Data Using Machine Learning
title An Experiment on Ab Initio Discovery of Biological Knowledge from scRNA-Seq Data Using Machine Learning
title_full An Experiment on Ab Initio Discovery of Biological Knowledge from scRNA-Seq Data Using Machine Learning
title_fullStr An Experiment on Ab Initio Discovery of Biological Knowledge from scRNA-Seq Data Using Machine Learning
title_full_unstemmed An Experiment on Ab Initio Discovery of Biological Knowledge from scRNA-Seq Data Using Machine Learning
title_short An Experiment on Ab Initio Discovery of Biological Knowledge from scRNA-Seq Data Using Machine Learning
title_sort experiment on ab initio discovery of biological knowledge from scrna-seq data using machine learning
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7660369/
https://www.ncbi.nlm.nih.gov/pubmed/33205121
http://dx.doi.org/10.1016/j.patter.2020.100071
work_keys_str_mv AT shahnajeebullah anexperimentonabinitiodiscoveryofbiologicalknowledgefromscrnaseqdatausingmachinelearning
AT lijiaqi anexperimentonabinitiodiscoveryofbiologicalknowledgefromscrnaseqdatausingmachinelearning
AT lifanhong anexperimentonabinitiodiscoveryofbiologicalknowledgefromscrnaseqdatausingmachinelearning
AT chenwenchang anexperimentonabinitiodiscoveryofbiologicalknowledgefromscrnaseqdatausingmachinelearning
AT gaohaoxiang anexperimentonabinitiodiscoveryofbiologicalknowledgefromscrnaseqdatausingmachinelearning
AT chensijie anexperimentonabinitiodiscoveryofbiologicalknowledgefromscrnaseqdatausingmachinelearning
AT huakui anexperimentonabinitiodiscoveryofbiologicalknowledgefromscrnaseqdatausingmachinelearning
AT zhangxuegong anexperimentonabinitiodiscoveryofbiologicalknowledgefromscrnaseqdatausingmachinelearning
AT shahnajeebullah experimentonabinitiodiscoveryofbiologicalknowledgefromscrnaseqdatausingmachinelearning
AT lijiaqi experimentonabinitiodiscoveryofbiologicalknowledgefromscrnaseqdatausingmachinelearning
AT lifanhong experimentonabinitiodiscoveryofbiologicalknowledgefromscrnaseqdatausingmachinelearning
AT chenwenchang experimentonabinitiodiscoveryofbiologicalknowledgefromscrnaseqdatausingmachinelearning
AT gaohaoxiang experimentonabinitiodiscoveryofbiologicalknowledgefromscrnaseqdatausingmachinelearning
AT chensijie experimentonabinitiodiscoveryofbiologicalknowledgefromscrnaseqdatausingmachinelearning
AT huakui experimentonabinitiodiscoveryofbiologicalknowledgefromscrnaseqdatausingmachinelearning
AT zhangxuegong experimentonabinitiodiscoveryofbiologicalknowledgefromscrnaseqdatausingmachinelearning