Cargando…
An Experiment on Ab Initio Discovery of Biological Knowledge from scRNA-Seq Data Using Machine Learning
Expectations of machine learning (ML) are high for discovering new patterns in high-throughput biological data, but most such practices are accustomed to relying on existing knowledge conditions to design experiments. Investigations of the power and limitation of ML in revealing complex patterns fro...
Autores principales: | Shah, Najeebullah, Li, Jiaqi, Li, Fanhong, Chen, Wenchang, Gao, Haoxiang, Chen, Sijie, Hua, Kui, Zhang, Xuegong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7660369/ https://www.ncbi.nlm.nih.gov/pubmed/33205121 http://dx.doi.org/10.1016/j.patter.2020.100071 |
Ejemplares similares
-
Using DenseFly algorithm for cell searching on massive scRNA-seq datasets
por: Chen, Yixin, et al.
Publicado: (2020) -
Improved SNV Discovery in Barcode-Stratified scRNA-seq Alignments
por: N. M., Prashant, et al.
Publicado: (2021) -
ScRNA-seq and ST-seq in liver research
por: He, Jia, et al.
Publicado: (2023) -
scRNASequest: an ecosystem of scRNA-seq analysis, visualization, and publishing
por: Li, Kejie, et al.
Publicado: (2023) -
scNCL: transferring labels from scRNA-seq to scATAC-seq data with neighborhood contrastive regularization
por: Yan, Xuhua, et al.
Publicado: (2023)