Cargando…
Generative Adversarial Networks in Digital Pathology: A Survey on Trends and Future Potential
Image analysis in the field of digital pathology has recently gained increased popularity. The use of high-quality whole-slide scanners enables the fast acquisition of large amounts of image data, showing extensive context and microscopic detail at the same time. Simultaneously, novel machine-learni...
Autores principales: | Tschuchnig, Maximilian E., Oostingh, Gertie J., Gadermayr, Michael |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7660380/ https://www.ncbi.nlm.nih.gov/pubmed/33205132 http://dx.doi.org/10.1016/j.patter.2020.100089 |
Ejemplares similares
-
Generative Adversarial Networks in Digital Pathology: A Survey on Trends and Future Potential
por: Tschuchnig, Maximilian E., et al.
Publicado: (2020) -
Generative Adversarial Networks in Digital Pathology and
Histopathological Image Processing: A Review
por: Jose, Laya, et al.
Publicado: (2021) -
Digital radiography image denoising using a generative adversarial network
por: Sun, Yuewen, et al.
Publicado: (2018) -
Generating mobility networks with generative adversarial networks
por: Mauro, Giovanni, et al.
Publicado: (2022) -
Generative adversarial networks for image generation
por: Mao, Xudong, et al.
Publicado: (2021)