Cargando…
Random Forest Models for Accurate Identification of Coordination Environments from X-Ray Absorption Near-Edge Structure
Analyzing coordination environments using X-ray absorption spectroscopy has broad applications in solid-state physics and material chemistry. Here, we show that random forest models trained on 190,000 K-edge X-ray absorption near-edge structure (XANES) spectra can identify the main atomic coordinati...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7660409/ https://www.ncbi.nlm.nih.gov/pubmed/33205091 http://dx.doi.org/10.1016/j.patter.2020.100013 |
Sumario: | Analyzing coordination environments using X-ray absorption spectroscopy has broad applications in solid-state physics and material chemistry. Here, we show that random forest models trained on 190,000 K-edge X-ray absorption near-edge structure (XANES) spectra can identify the main atomic coordination environment with a high accuracy of 85.4% and all associated coordination environments with a high Jaccard score of 81.8% for 33 cation elements in oxides, significantly outperforming other machine-learning models. In a departure from prior works, the coordination environment is described as a distribution over 25 distinct coordination motifs with coordination numbers ranging from 1 to 12. More importantly, we show that the random forest models can be used to predict coordination environments from experimental K-edge XANES with minimal loss in accuracy. A drop-variable feature importance analysis highlights the key roles that the pre-edge and main-peak regions play in coordination environment identification. |
---|