Cargando…
Cellular State Transformations Using Deep Learning for Precision Medicine Applications
We introduce the Transcriptome State Perturbation Generator (TSPG) as a novel deep-learning method to identify changes in genomic expression that occur between tissue states using generative adversarial networks. TSPG learns the transcriptome perturbations from RNA-sequencing data required to shift...
Autores principales: | Targonski, Colin, Bender, M. Reed, Shealy, Benjamin T., Husain, Benafsh, Paseman, Bill, Smith, Melissa C., Feltus, F. Alex |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7660411/ https://www.ncbi.nlm.nih.gov/pubmed/33205131 http://dx.doi.org/10.1016/j.patter.2020.100087 |
Ejemplares similares
-
EdgeCrafting: mining embedded, latent, nonlinear patterns to construct gene relationship networks
por: Husain, Benafsh, et al.
Publicado: (2022) -
NetExtractor: Extracting a Cerebellar Tissue Gene Regulatory Network Using Differentially Expressed High Mutual Information Binary RNA Profiles
por: Husain, Benafsh, et al.
Publicado: (2020) -
Uncovering biomarker genes with enriched classification potential from Hallmark gene sets
por: Targonski, Colin A., et al.
Publicado: (2019) -
EdgeScaping: Mapping the spatial distribution of pairwise gene expression intensities
por: Husain, Benafsh, et al.
Publicado: (2019) -
Discovery of eQTL Alleles Associated with Autism Spectrum Disorder: A Case–Control Study
por: Hickman, Allison R., et al.
Publicado: (2022)