Cargando…
Sentiment Analysis of Conservation Studies Captures Successes of Species Reintroductions
Learning from the rapidly growing body of scientific articles is constrained by human bandwidth. Existing methods in machine learning have been developed to extract knowledge from human language and may automate this process. Here, we apply sentiment analysis, a type of natural language processing,...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7660424/ https://www.ncbi.nlm.nih.gov/pubmed/33205082 http://dx.doi.org/10.1016/j.patter.2020.100005 |
_version_ | 1783609001495232512 |
---|---|
author | Van Houtan, Kyle S. Gagne, Tyler Jenkins, Clinton N. Joppa, Lucas |
author_facet | Van Houtan, Kyle S. Gagne, Tyler Jenkins, Clinton N. Joppa, Lucas |
author_sort | Van Houtan, Kyle S. |
collection | PubMed |
description | Learning from the rapidly growing body of scientific articles is constrained by human bandwidth. Existing methods in machine learning have been developed to extract knowledge from human language and may automate this process. Here, we apply sentiment analysis, a type of natural language processing, to facilitate a literature review in reintroduction biology. We analyzed 1,030,558 words from 4,313 scientific abstracts published over four decades using four previously trained lexicon-based models and one recursive neural tensor network model. We find frequently used terms share both a general and a domain-specific value, with either positive (success, protect, growth) or negative (threaten, loss, risk) sentiment. Sentiment trends suggest that reintroduction studies have become less variable and increasingly successful over time and seem to capture known successes and challenges for conservation biology. This approach offers promise for rapidly extracting explicit and latent information from a large corpus of scientific texts. |
format | Online Article Text |
id | pubmed-7660424 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-76604242020-11-16 Sentiment Analysis of Conservation Studies Captures Successes of Species Reintroductions Van Houtan, Kyle S. Gagne, Tyler Jenkins, Clinton N. Joppa, Lucas Patterns (N Y) Article Learning from the rapidly growing body of scientific articles is constrained by human bandwidth. Existing methods in machine learning have been developed to extract knowledge from human language and may automate this process. Here, we apply sentiment analysis, a type of natural language processing, to facilitate a literature review in reintroduction biology. We analyzed 1,030,558 words from 4,313 scientific abstracts published over four decades using four previously trained lexicon-based models and one recursive neural tensor network model. We find frequently used terms share both a general and a domain-specific value, with either positive (success, protect, growth) or negative (threaten, loss, risk) sentiment. Sentiment trends suggest that reintroduction studies have become less variable and increasingly successful over time and seem to capture known successes and challenges for conservation biology. This approach offers promise for rapidly extracting explicit and latent information from a large corpus of scientific texts. Elsevier 2020-03-20 /pmc/articles/PMC7660424/ /pubmed/33205082 http://dx.doi.org/10.1016/j.patter.2020.100005 Text en © 2020 The Authors http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Van Houtan, Kyle S. Gagne, Tyler Jenkins, Clinton N. Joppa, Lucas Sentiment Analysis of Conservation Studies Captures Successes of Species Reintroductions |
title | Sentiment Analysis of Conservation Studies Captures Successes of Species Reintroductions |
title_full | Sentiment Analysis of Conservation Studies Captures Successes of Species Reintroductions |
title_fullStr | Sentiment Analysis of Conservation Studies Captures Successes of Species Reintroductions |
title_full_unstemmed | Sentiment Analysis of Conservation Studies Captures Successes of Species Reintroductions |
title_short | Sentiment Analysis of Conservation Studies Captures Successes of Species Reintroductions |
title_sort | sentiment analysis of conservation studies captures successes of species reintroductions |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7660424/ https://www.ncbi.nlm.nih.gov/pubmed/33205082 http://dx.doi.org/10.1016/j.patter.2020.100005 |
work_keys_str_mv | AT vanhoutankyles sentimentanalysisofconservationstudiescapturessuccessesofspeciesreintroductions AT gagnetyler sentimentanalysisofconservationstudiescapturessuccessesofspeciesreintroductions AT jenkinsclintonn sentimentanalysisofconservationstudiescapturessuccessesofspeciesreintroductions AT joppalucas sentimentanalysisofconservationstudiescapturessuccessesofspeciesreintroductions |