Cargando…
A Distance-Based Framework for the Characterization of Metabolic Heterogeneity in Large Sets of Genome-Scale Metabolic Models
Gene expression and protein abundance data of cells or tissues belonging to healthy and diseased individuals can be integrated and mapped onto genome-scale metabolic networks to produce patient-derived models. As the number of available and newly developed genome-scale metabolic models increases, ne...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7660451/ https://www.ncbi.nlm.nih.gov/pubmed/33205127 http://dx.doi.org/10.1016/j.patter.2020.100080 |
Sumario: | Gene expression and protein abundance data of cells or tissues belonging to healthy and diseased individuals can be integrated and mapped onto genome-scale metabolic networks to produce patient-derived models. As the number of available and newly developed genome-scale metabolic models increases, new methods are needed to objectively analyze large sets of models and to identify the determinants of metabolic heterogeneity. We developed a distance-based workflow that combines consensus machine learning and metabolic modeling techniques and used it to apply pattern recognition algorithms to collections of genome-scale metabolic models, both microbial and human. Model composition, network topology and flux distribution provide complementary aspects of metabolic heterogeneity in patient-specific genome-scale models of skeletal muscle. Using consensus clustering analysis we identified the metabolic processes involved in the individual responses to endurance training in older adults. |
---|