Cargando…
Global and Local Tensor Factorization for Multi-criteria Recommender System
In multi-criteria recommender systems, matrix factorization characterizes users and items via latent factor vectors inferred from user-item rating patterns. However, two-dimensional matrix factorization models may not be able to cope with the recommendation problem that involves additional criterion...
Autores principales: | Wang, Shuliang, Yang, Jingting, Chen, Zhengyu, Yuan, Hanning, Geng, Jing, Hai, Zhen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7660452/ https://www.ncbi.nlm.nih.gov/pubmed/33205096 http://dx.doi.org/10.1016/j.patter.2020.100023 |
Ejemplares similares
-
Matrix and tensor factorization techniques for recommender systems
por: Symeonidis, Panagiotis, et al.
Publicado: (2017) -
Multi-Criteria Recommendation Systems to Foster Online Grocery
por: Hafez, Manar Mohamed, et al.
Publicado: (2021) -
Analysing the impact of contextual segments on the overall rating in multi-criteria recommender systems
por: Krishna, Chinta Venkata Murali, et al.
Publicado: (2023) -
Adaptive genetic algorithm for user preference discovery in multi-criteria recommender systems
por: Wasid, Mohammed, et al.
Publicado: (2023) -
Integrating multi-criteria decision-making with hybrid deep learning for sentiment analysis in recommender systems
por: Angamuthu, Swathi, et al.
Publicado: (2023)