Cargando…
Prediction of hierarchical time series using structured regularization and its application to artificial neural networks
This paper discusses the prediction of hierarchical time series, where each upper-level time series is calculated by summing appropriate lower-level time series. Forecasts for such hierarchical time series should be coherent, meaning that the forecast for an upper-level time series equals the sum of...
Autores principales: | Shiratori, Tomokaze, Kobayashi, Ken, Takano, Yuichi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7660543/ https://www.ncbi.nlm.nih.gov/pubmed/33180811 http://dx.doi.org/10.1371/journal.pone.0242099 |
Ejemplares similares
-
A Method for Estimating the Entropy of Time Series Using Artificial Neural Networks
por: Velichko, Andrei, et al.
Publicado: (2021) -
Recurrent neural network modeling of multivariate time series and its application in temperature forecasting
por: Nketiah, Edward Appau, et al.
Publicado: (2023) -
Forecasting Natural Gas Prices Using Wavelets, Time Series, and Artificial Neural Networks
por: Jin, Junghwan, et al.
Publicado: (2015) -
Discriminating chaotic and stochastic time series using permutation entropy and artificial neural networks
por: Boaretto, B. R. R., et al.
Publicado: (2021) -
Hierarchical Neural Network Structures for Phoneme Recognition
por: Vasquez, Daniel, et al.
Publicado: (2013)