Cargando…
Analyzing inter-reader variability affecting deep ensemble learning for COVID-19 detection in chest radiographs
Data-driven deep learning (DL) methods using convolutional neural networks (CNNs) demonstrate promising performance in natural image computer vision tasks. However, their use in medical computer vision tasks faces several limitations, viz., (i) adapting to visual characteristics that are unlike natu...
Autores principales: | Rajaraman, Sivaramakrishnan, Sornapudi, Sudhir, Alderson, Philip O., Folio, Les R., Antani, Sameer K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7660555/ https://www.ncbi.nlm.nih.gov/pubmed/33180877 http://dx.doi.org/10.1371/journal.pone.0242301 |
Ejemplares similares
-
DeBoNet: A deep bone suppression model ensemble to improve disease detection in chest radiographs
por: Rajaraman, Sivaramakrishnan, et al.
Publicado: (2022) -
Detecting Tuberculosis-Consistent Findings in Lateral Chest X-Rays Using an Ensemble of CNNs and Vision Transformers
por: Rajaraman, Sivaramakrishnan, et al.
Publicado: (2022) -
Chest X-ray Bone Suppression for Improving Classification of Tuberculosis-Consistent Findings
por: Rajaraman, Sivaramakrishnan, et al.
Publicado: (2021) -
Improved Semantic Segmentation of Tuberculosis—Consistent Findings in Chest X-rays Using Augmented Training of Modality-Specific U-Net Models with Weak Localizations
por: Rajaraman, Sivaramakrishnan, et al.
Publicado: (2021) -
Detection and visualization of abnormality in chest radiographs using modality-specific convolutional neural network ensembles
por: Rajaraman, Sivaramakrishnan, et al.
Publicado: (2020)