Cargando…

One-Dimensional Multi-Scale Domain Adaptive Network for Bearing-Fault Diagnosis under Varying Working Conditions

Data-driven bearing-fault diagnosis methods have become a research hotspot recently. These methods have to meet two premises: (1) the distributions of the data to be tested and the training data are the same; (2) there are a large number of high-quality labeled data. However, machines usually work u...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Kai, Zhao, Wei, Xu, Aidong, Zeng, Peng, Yang, Shunkun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7660602/
https://www.ncbi.nlm.nih.gov/pubmed/33114173
http://dx.doi.org/10.3390/s20216039
Descripción
Sumario:Data-driven bearing-fault diagnosis methods have become a research hotspot recently. These methods have to meet two premises: (1) the distributions of the data to be tested and the training data are the same; (2) there are a large number of high-quality labeled data. However, machines usually work under different working conditions in practice, which challenges these prerequisites due to the fact that the data distributions under different working conditions are different. In this paper, the one-dimensional Multi-Scale Domain Adaptive Network (1D-MSDAN) is proposed to address this issue. The 1D-MSDAN is a kind of deep transfer model, which uses both feature adaptation and classifier adaptation to guide the multi-scale convolutional neural network to perform bearing-fault diagnosis under varying working conditions. Feature adaptation is performed by both multi-scale feature adaptation and multi-level feature adaptation, which helps in finding domain-invariant features by minimizing the distribution discrepancy between different working conditions by using the Multi-kernel Maximum Mean Discrepancy (MK-MMD). Furthermore, classifier adaptation is performed by entropy minimization in the target domain to bridge the source classifier and target classifier to further eliminate domain discrepancy. The Case Western Reserve University (CWRU) bearing database is used to validate the proposed 1D-MSDAN. The experimental results show that the diagnostic accuracy for the 12 transfer tasks performed by 1D-MSDAN was superior to that of the mainstream transfer learning models for bearing-fault diagnosis under variable working conditions. In addition, the transfer learning performance of 1D-MSDAN for multi-target domain adaptation and real industrial scenarios was also verified.