Cargando…
Tensor Decomposition for Spatial—Temporal Traffic Flow Prediction with Sparse Data
Urban transport traffic surveillance is of great importance for public traffic control and personal travel path planning. Effective and efficient traffic flow prediction is helpful to optimize these real applications. The main challenge of traffic flow prediction is the data sparsity problem, meanin...
Autores principales: | Yang, Funing, Liu, Guoliang, Huang, Liping, Chin, Cheng Siong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7660680/ https://www.ncbi.nlm.nih.gov/pubmed/33114275 http://dx.doi.org/10.3390/s20216046 |
Ejemplares similares
-
Multicomponent Spatial-Temporal Graph Attention Convolution Networks for Traffic Prediction with Spatially Sparse Data
por: Liu, Shaohua, et al.
Publicado: (2021) -
Sparse Tensor Decomposition for Haplotype Assembly of Diploids and Polyploids
por: Hashemi, Abolfazl, et al.
Publicado: (2018) -
Single-Trial Decoding of Bistable Perception Based on Sparse Nonnegative Tensor Decomposition
por: Wang, Zhisong, et al.
Publicado: (2008) -
Using Tensor Completion Method to Achieving Better Coverage of Traffic State Estimation from Sparse Floating Car Data
por: Ran, Bin, et al.
Publicado: (2016) -
TensorFlow: powerful predictive analytics with TensorFlow : predict valuable insights of your data with TensorFlow
por: Karim, Md Rezaul
Publicado: (2018)