Cargando…
Application of MRI Radiomics-Based Machine Learning Model to Improve Contralateral BI-RADS 4 Lesion Assessment
OBJECTIVE: This study aimed to explore the potential of magnetic resonance imaging (MRI) radiomics-based machine learning to improve assessment and diagnosis of contralateral Breast Imaging Reporting and Data System (BI-RADS) category 4 lesions in women with primary breast cancer. MATERIALS AND METH...
Autores principales: | Hao, Wen, Gong, Jing, Wang, Shengping, Zhu, Hui, Zhao, Bin, Peng, Weijun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7660748/ https://www.ncbi.nlm.nih.gov/pubmed/33194589 http://dx.doi.org/10.3389/fonc.2020.531476 |
Ejemplares similares
-
BI-RADS Reading of Non-Mass Lesions on DCE-MRI and Differential Diagnosis Performed by Radiomics and Deep Learning
por: Zhou, Jiejie, et al.
Publicado: (2021) -
An MRI-Based Radiomics Model for Predicting the Benignity and Malignancy of BI-RADS 4 Breast Lesions
por: Zhang, Renzhi, et al.
Publicado: (2022) -
Radiomics Based on DCE-MRI Improved Diagnostic Performance Compared to BI-RADS Analysis in Identifying Sclerosing Adenosis of the Breast
por: Ruan, Mei, et al.
Publicado: (2022) -
Comparison and Fusion of Deep Learning and Radiomics Features of Ground-Glass Nodules to Predict the Invasiveness Risk of Stage-I Lung Adenocarcinomas in CT Scan
por: Xia, Xianwu, et al.
Publicado: (2020) -
Multiparameter MRI Model With DCE-MRI, DWI, and Synthetic MRI Improves the Diagnostic Performance of BI-RADS 4 Lesions
por: Sun, Shi Yun, et al.
Publicado: (2021)