Cargando…
Adverse drug event presentation and tracking (ADEPT): semiautomated, high throughput pharmacovigilance using real-world data
OBJECTIVE: To advance use of real-world data (RWD) for pharmacovigilance, we sought to integrate a high-sensitivity natural language processing (NLP) pipeline for detecting potential adverse drug events (ADEs) with easily interpretable output for high-efficiency human review and adjudication of true...
Autores principales: | Geva, Alon, Stedman, Jason P, Manzi, Shannon F, Lin, Chen, Savova, Guergana K, Avillach, Paul, Mandl, Kenneth D |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7660953/ https://www.ncbi.nlm.nih.gov/pubmed/33215076 http://dx.doi.org/10.1093/jamiaopen/ooaa031 |
Ejemplares similares
-
Adverse drug event rates in pediatric pulmonary hypertension: a comparison of real-world data sources
por: Geva, Alon, et al.
Publicado: (2019) -
Discovering body site and severity modifiers in clinical texts
por: Dligach, Dmitriy, et al.
Publicado: (2014) -
DeepADEMiner: a deep learning pharmacovigilance pipeline for extraction and normalization of adverse drug event mentions on Twitter
por: Magge, Arjun, et al.
Publicado: (2021) -
ADEPT IN THE SCIENCES
Publicado: (1963) -
A computable case definition for patients with SARS-CoV2 testing that occurred outside the hospital
por: Wang, Lijing, et al.
Publicado: (2023)