Cargando…
Age and Sex Estimation Using Artificial Intelligence From Standard 12-Lead ECGs
Sex and age have long been known to affect the ECG. Several biologic variables and anatomic factors may contribute to sex and age-related differences on the ECG. We hypothesized that a convolutional neural network (CNN) could be trained through a process called deep learning to predict a person’s ag...
Autores principales: | Attia, Zachi I., Friedman, Paul A., Noseworthy, Peter A., Lopez-Jimenez, Francisco, Ladewig, Dorothy J., Satam, Gaurav, Pellikka, Patricia A., Munger, Thomas M., Asirvatham, Samuel J., Scott, Christopher G., Carter, Rickey E., Kapa, Suraj |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Lippincott Williams & Wilkins
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7661045/ https://www.ncbi.nlm.nih.gov/pubmed/31450977 http://dx.doi.org/10.1161/CIRCEP.119.007284 |
Ejemplares similares
-
Artificial Intelligence ECG to Detect Left Ventricular Dysfunction in COVID-19: A Case Series
por: Attia, Zachi I., et al.
Publicado: (2020) -
An artificial intelligence–enabled ECG algorithm for comprehensive ECG interpretation: Can it pass the ‘Turing test’?
por: Kashou, Anthony H., et al.
Publicado: (2021) -
Artificial intelligence—electrocardiography to detect atrial fibrillation: trend of probability before and after the first episode
por: Christopoulos, Georgios, et al.
Publicado: (2022) -
Real-world performance, long-term efficacy, and absence of bias in the artificial intelligence enhanced electrocardiogram to detect left ventricular systolic dysfunction
por: Harmon, David M, et al.
Publicado: (2022) -
AI ENHANCED ECG ENABLED RAPID NON-INVASIVE EXCLUSION OF SEVERE ACUTE RESPIRATORY SYNDROME CORONAVIRUS 2 (SARS-COV-2) INFECTION
por: Attia, Zachi Itzhak, et al.
Publicado: (2021)