Cargando…

CT-based radiomics features in the prediction of thyroid cartilage invasion from laryngeal and hypopharyngeal squamous cell carcinoma

BACKGROUND: Laryngeal and hypopharyngeal squamous cell carcinoma (LHSCC) with thyroid cartilage invasion are considered T4 and need total laryngectomy. However, the accuracy of preoperative diagnosis of thyroid cartilage invasion remains lower. Therefore, the purpose of this study was to assess the...

Descripción completa

Detalles Bibliográficos
Autores principales: Guo, Ran, Guo, Jian, Zhang, Lichen, Qu, Xiaoxia, Dai, Shuangfeng, Peng, Ruchen, Chong, Vincent F. H., Xian, Junfang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7661189/
https://www.ncbi.nlm.nih.gov/pubmed/33176885
http://dx.doi.org/10.1186/s40644-020-00359-2
Descripción
Sumario:BACKGROUND: Laryngeal and hypopharyngeal squamous cell carcinoma (LHSCC) with thyroid cartilage invasion are considered T4 and need total laryngectomy. However, the accuracy of preoperative diagnosis of thyroid cartilage invasion remains lower. Therefore, the purpose of this study was to assess the potential of computed tomography (CT)-based radiomics features in the prediction of thyroid cartilage invasion from LHSCC. METHODS: A total of 265 patients with pathologically proven LHSCC were enrolled in this retrospective study (86 with thyroid cartilage invasion and 179 without invasion). Two head and neck radiologists evaluated the thyroid cartilage invasion on CT images. Radiomics features were extracted from venous phase contrast-enhanced CT images. The least absolute shrinkage and selection operator (LASSO) and logistic regression (LR) method were used for dimension reduction and model construction. In addition, the support vector machine-based synthetic minority oversampling (SVMSMOTE) algorithm was adopted to balance the dataset and a new LR-SVMSMOTE model was constructed. The performance of the radiologist and the two models were evaluated with receiver operating characteristic (ROC) curves and compared using the DeLong test. RESULTS: The areas under the ROC curves (AUCs) in the prediction of thyroid cartilage invasion from LHSCC for the LR-SVMSMOTE model, LR model, and radiologist were 0.905 [95% confidence interval (CI): 0.863 to 0.937)], 0.876 (95%CI: 0.830 to 0.913), and 0.721 (95%CI: 0.663–0.774), respectively. The AUCs of both models were higher than that of the radiologist assessment (all P < 0.001). There was no significant difference in predictive performance between the LR-SVMSMOTE and LR models (P = 0.05). CONCLUSIONS: Models based on CT radiomic features can improve the accuracy of predicting thyroid cartilage invasion from LHSCC and provide a new potentially noninvasive method for preoperative prediction of thyroid cartilage invasion from LHSCC. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s40644-020-00359-2.