Cargando…

Glandular trichomes of Robinia viscosa Vent. var. hartwigii (Koehne) Ashe (Faboideae, Fabaceae)—morphology, histochemistry and ultrastructure

MAIN CONCLUSION: Permanent glandular trichomes of Robinia viscosa var. hartwigii produce viscous secretion containing several secondary metabolites, as lipids, mucilage, flavonoids, proteins and alkaloids. ABSTRACT: Robinia viscosa var. hartwigii (Hartweg’s locust) is an ornamental tree with high ap...

Descripción completa

Detalles Bibliográficos
Autores principales: Konarska, Agata, Łotocka, Barbara
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7661392/
https://www.ncbi.nlm.nih.gov/pubmed/33180181
http://dx.doi.org/10.1007/s00425-020-03513-z
_version_ 1783609199039610880
author Konarska, Agata
Łotocka, Barbara
author_facet Konarska, Agata
Łotocka, Barbara
author_sort Konarska, Agata
collection PubMed
description MAIN CONCLUSION: Permanent glandular trichomes of Robinia viscosa var. hartwigii produce viscous secretion containing several secondary metabolites, as lipids, mucilage, flavonoids, proteins and alkaloids. ABSTRACT: Robinia viscosa var. hartwigii (Hartweg’s locust) is an ornamental tree with high apicultural value. It can be planted in urban greenery and in degraded areas. The shoots, leaves, and inflorescences of this plant are equipped with numerous persistent glandular trichomes producing sticky secretion. The distribution, origin, development, morphology, anatomy, and ultrastructure of glandular trichomes of Hartweg's locust flowers as well as the localisation and composition of their secretory products were investigated for the first time. To this end, light, scanning, and transmission electron microscopy combined with histochemical and fluorescence techniques were used. The massive glandular trichomes differing in the distribution, length, and stage of development were built of a multicellular and multiseriate stalk and a multicellular head. The secretory cells in the stalk and head had large nuclei with nucleoli, numerous chloroplasts with thylakoids and starch grains, mitochondria, endoplasmic reticulum profiles, Golgi apparatus, vesicles, and multivesicular bodies. Many vacuoles contained phenolic compounds dissolved or forming various condensed deposits. The secretion components were transported through symplast elements, and the granulocrine and eccrine modes of nectar secretion were observed. The secretion was accumulated in the subcuticular space at the trichome apex and released through a pore in the cuticle. Histochemical and fluorescence assays showed that the trichomes and secretion contained lipophilic and polyphenol compounds, polysaccharides, proteins, and alkaloids. We suggest that these metabolites may serve an important function in protection of plants against biotic stress conditions and may also be a source of phytopharmaceuticals in the future.
format Online
Article
Text
id pubmed-7661392
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Springer Berlin Heidelberg
record_format MEDLINE/PubMed
spelling pubmed-76613922020-11-13 Glandular trichomes of Robinia viscosa Vent. var. hartwigii (Koehne) Ashe (Faboideae, Fabaceae)—morphology, histochemistry and ultrastructure Konarska, Agata Łotocka, Barbara Planta Original Article MAIN CONCLUSION: Permanent glandular trichomes of Robinia viscosa var. hartwigii produce viscous secretion containing several secondary metabolites, as lipids, mucilage, flavonoids, proteins and alkaloids. ABSTRACT: Robinia viscosa var. hartwigii (Hartweg’s locust) is an ornamental tree with high apicultural value. It can be planted in urban greenery and in degraded areas. The shoots, leaves, and inflorescences of this plant are equipped with numerous persistent glandular trichomes producing sticky secretion. The distribution, origin, development, morphology, anatomy, and ultrastructure of glandular trichomes of Hartweg's locust flowers as well as the localisation and composition of their secretory products were investigated for the first time. To this end, light, scanning, and transmission electron microscopy combined with histochemical and fluorescence techniques were used. The massive glandular trichomes differing in the distribution, length, and stage of development were built of a multicellular and multiseriate stalk and a multicellular head. The secretory cells in the stalk and head had large nuclei with nucleoli, numerous chloroplasts with thylakoids and starch grains, mitochondria, endoplasmic reticulum profiles, Golgi apparatus, vesicles, and multivesicular bodies. Many vacuoles contained phenolic compounds dissolved or forming various condensed deposits. The secretion components were transported through symplast elements, and the granulocrine and eccrine modes of nectar secretion were observed. The secretion was accumulated in the subcuticular space at the trichome apex and released through a pore in the cuticle. Histochemical and fluorescence assays showed that the trichomes and secretion contained lipophilic and polyphenol compounds, polysaccharides, proteins, and alkaloids. We suggest that these metabolites may serve an important function in protection of plants against biotic stress conditions and may also be a source of phytopharmaceuticals in the future. Springer Berlin Heidelberg 2020-11-12 2020 /pmc/articles/PMC7661392/ /pubmed/33180181 http://dx.doi.org/10.1007/s00425-020-03513-z Text en © The Author(s) 2020 Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Original Article
Konarska, Agata
Łotocka, Barbara
Glandular trichomes of Robinia viscosa Vent. var. hartwigii (Koehne) Ashe (Faboideae, Fabaceae)—morphology, histochemistry and ultrastructure
title Glandular trichomes of Robinia viscosa Vent. var. hartwigii (Koehne) Ashe (Faboideae, Fabaceae)—morphology, histochemistry and ultrastructure
title_full Glandular trichomes of Robinia viscosa Vent. var. hartwigii (Koehne) Ashe (Faboideae, Fabaceae)—morphology, histochemistry and ultrastructure
title_fullStr Glandular trichomes of Robinia viscosa Vent. var. hartwigii (Koehne) Ashe (Faboideae, Fabaceae)—morphology, histochemistry and ultrastructure
title_full_unstemmed Glandular trichomes of Robinia viscosa Vent. var. hartwigii (Koehne) Ashe (Faboideae, Fabaceae)—morphology, histochemistry and ultrastructure
title_short Glandular trichomes of Robinia viscosa Vent. var. hartwigii (Koehne) Ashe (Faboideae, Fabaceae)—morphology, histochemistry and ultrastructure
title_sort glandular trichomes of robinia viscosa vent. var. hartwigii (koehne) ashe (faboideae, fabaceae)—morphology, histochemistry and ultrastructure
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7661392/
https://www.ncbi.nlm.nih.gov/pubmed/33180181
http://dx.doi.org/10.1007/s00425-020-03513-z
work_keys_str_mv AT konarskaagata glandulartrichomesofrobiniaviscosaventvarhartwigiikoehneashefaboideaefabaceaemorphologyhistochemistryandultrastructure
AT łotockabarbara glandulartrichomesofrobiniaviscosaventvarhartwigiikoehneashefaboideaefabaceaemorphologyhistochemistryandultrastructure