Cargando…
Drug efficacy and toxicity prediction: an innovative application of transcriptomic data
Drug toxicity and efficacy are difficult to predict partly because they are both poorly defined, which I aim to remedy here from a transcriptomic perspective. There are two major categories of drugs: (1) restorative drugs aiming to restore an abnormal cell, tissue, or organ to normal function (e.g.,...
Autor principal: | Xia, Xuhua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Netherlands
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7661398/ https://www.ncbi.nlm.nih.gov/pubmed/32780246 http://dx.doi.org/10.1007/s10565-020-09552-2 |
Ejemplares similares
-
ARSDA: A New Approach for Storing, Transmitting and Analyzing Transcriptomic Data
por: Xia, Xuhua
Publicado: (2017) -
Novel deep learning-based transcriptome data analysis for drug-drug interaction prediction with an application in diabetes
por: Luo, Qichao, et al.
Publicado: (2021) -
Machine learning approaches to predict drug efficacy and toxicity in oncology
por: Badwan, Bara A., et al.
Publicado: (2023) -
Bioinformatics and Drug Discovery
por: Xia, Xuhua
Publicado: (2017) -
Horizontal Gene Transfer and Drug Resistance Involving Mycobacterium tuberculosis
por: Xia, Xuhua
Publicado: (2023)