Cargando…
Angiotensin dependent and angiotensin independent protective effects of renin-b in H9c2 cells after anoxia
The renin-angiotensin system is known to regulate blood pressure as well as water- and electrolyte balance. An activated RAS is involved in the development of hypertension and hypertension-related organ damage. Thus, inhibitors of the RAS are protective and markedly increasing the life span of patie...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7661495/ https://www.ncbi.nlm.nih.gov/pubmed/33184370 http://dx.doi.org/10.1038/s41598-020-76712-z |
Sumario: | The renin-angiotensin system is known to regulate blood pressure as well as water- and electrolyte balance. An activated RAS is involved in the development of hypertension and hypertension-related organ damage. Thus, inhibitors of the RAS are protective and markedly increasing the life span of patients. In contrast, renin transcripts have been discovered encoding a cytoplasmatic renin isoform, termed renin-b, which is not harmful but may be even protective. Here we demonstrate that depletion of renin-b encoding transcripts by small interference RNA decreased ATP levels and increased basal necrosis as well as apoptosis rates. Furthermore, renin-b depletion potentiated the anoxia-induced increase of necrosis rates. Vice versa, overexpression of renin-b prevented the anoxia-induced increase of caspase-mediated apoptosis rates. Besides, cells overexpressing renin-b exhibited even reduced mitochondrial mediated apoptosis rates under anoxia, when compared with normoxic conditions, as indicated by Annexin V labeling. However, whereas the protective effect of renin-b on caspase-mediated apoptosis was completely blocked by the renin inhibitor CH732, the effect on mitochondrial-mediated apoptosis was not affected by CH732 at all. From these data we conclude that renin-b overexpression mediates cardioprotective effects under anoxia with respect to mitochondrial induced apoptosis angiotensin-independently, but with respect to caspase induced apoptosis likely in an angiotensin-dependent manner. |
---|