Cargando…

Long Non-coding RNAs Responsive to Blast Fungus Infection in Rice

BACKGROUND: Long non-coding RNAs (LncRNAs) have emerged as important regulators in many physiological processes in plant. By high-throughput RNA-sequencing, many pathogen-associated LncRNAs were mapped in various plants, and some of them were proved to be involved in plant defense responses. The ric...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Lan-Lan, Jin, Jing-Jing, Li, Li-Hua, Qu, Shao-Hong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7661613/
https://www.ncbi.nlm.nih.gov/pubmed/33180206
http://dx.doi.org/10.1186/s12284-020-00437-w
Descripción
Sumario:BACKGROUND: Long non-coding RNAs (LncRNAs) have emerged as important regulators in many physiological processes in plant. By high-throughput RNA-sequencing, many pathogen-associated LncRNAs were mapped in various plants, and some of them were proved to be involved in plant defense responses. The rice blast disease caused by Magnaporthe oryzae (M. oryzae) is one of the most destructive diseases in rice. However, M. oryzae-induced LncRNAs in rice is yet to be studied. FINDINGS: We investigated rice LncRNAs that were associated with the rice blast fungus. Totally 83 LncRNAs were up-regulated after blast fungus infection and 78 were down-regulated. Of them, the natural antisense transcripts (NATs) were the most abundant. The expression of some LncRNAs has similar pattern with their host genes or neighboring genes, suggesting a cis function of them in regulating gene transcription level. The deferentially expressed (DE) LncRNAs and genes co-expression analysis revealed some LncRNAs were associated with genes known to be involved in pathogen resistance, and these genes were enriched in terpenoid biosynthesis and defense response by Gene Ontology (GO) enrichment analysis. Interestingly, one of up-regulated DE-intronic RNA was derived from a jasmonate (JA) biosynthetic gene, lipoxygenase RLL (LOX-RLL). Levels of JAs were significantly increased after blast fungus infection. Given that JA is known to regulate blast resistance in rice, we suggested that LncRNA may be involved in JA-mediated rice resistance to blast fungus. CONCLUSIONS: This study identified blast fungus-responsive LncRNAs in rice, which provides another layer of candidates that regulate rice and blast fungus interactions. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12284-020-00437-w.