Cargando…

AEG-1 deletion promotes cartilage repair and modulates bone remodeling-related cytokines via TLR4/MyD88/NF-κB inhibition in ovariectomized rats with osteoporosis

BACKGROUND: Osteoporosis is a systemic skeletal disorder that can impact a variety of bones throughout the body. Astrocyte-elevated gene-1 (AEG-1) is involved in multiple pro-tumorigenic functions and participates in various inflammatory reactions. However, whether it has an impact on osteoporosis-r...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Yuan, Zhao, Qing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: AME Publishing Company 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7661885/
https://www.ncbi.nlm.nih.gov/pubmed/33209878
http://dx.doi.org/10.21037/atm-20-5842
Descripción
Sumario:BACKGROUND: Osteoporosis is a systemic skeletal disorder that can impact a variety of bones throughout the body. Astrocyte-elevated gene-1 (AEG-1) is involved in multiple pro-tumorigenic functions and participates in various inflammatory reactions. However, whether it has an impact on osteoporosis-related cartilage repair and bone remodeling remains unknown. METHODS: We utilized an ovariectomy mouse model with AEG-1 deletion to investigate the role of AEG-1 in osteoporosis. The mRNA level of AEG-1 was detected by RT-PCR, bone markers, bone volume/total volume (BV/TV), trabecular bone surface/bone volume (BSA/BV) and trabecular bone thickness (Tb. Th) were detected by micro computed tomography (µCT), bone injury was observed by HE and alcian blue staining. The contents of IL-6, IL-17, iNOS and IL-10 in peripheral blood of the three groups were detected by ELISA. The expression of OSX, coi1a1, OC, TLR4, MyD88 and NF-κB were detected by Western Blot. RESULTS: µCT revealed increased bone volume in the AEG-1 knockout (KO) ovariectomy (OVX) group compared to the wildtype (WT) OVX group 4 weeks after surgery, indicating restored bone formation after AEG-1 deletion. Flow sorting revealed that AEG-1 deletion inhibited the production of inflammatory factors. Western blot demonstrated activation of the TLR4/MyD88/NF-κB pathway after LPS exposure, which was reduced by AEG-1 deletion. AEG-1 deletion also improved lipopolysaccharide (LPS) induced adverse reactions. CONCLUSIONS: Taken together, these findings indicate that AEG-1 deletion improves cartilage repair and bone remodeling during osteoporosis, which may partly occur through the inhibition of the TLR4/MyD88/NF-κB signaling pathway.