Cargando…

Innate and Adaptive Immunity of Murine Neural Stem Cell-Derived piRNA Exosomes/Microvesicles against Pseudotyped SARS-CoV-2 and HIV-Based Lentivirus

By testing pseudotyped SARS-CoV-2 and HIV-based lentivirus, this study reports that exosomes/microvesicles (Ex/Mv) isolated from murine hypothalamic neural stem/progenitor cells (htNSC) or subtype htNSC(PGHM) as well as hippocampal NSC have innate immunity-like actions against these RNA viruses. The...

Descripción completa

Detalles Bibliográficos
Autores principales: Yu, Bin, Ikhlas, Shoeb, Ruan, Chunsheng, Zhong, Xingxing, Cai, Dongsheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7661939/
https://www.ncbi.nlm.nih.gov/pubmed/33205008
http://dx.doi.org/10.1016/j.isci.2020.101806
Descripción
Sumario:By testing pseudotyped SARS-CoV-2 and HIV-based lentivirus, this study reports that exosomes/microvesicles (Ex/Mv) isolated from murine hypothalamic neural stem/progenitor cells (htNSC) or subtype htNSC(PGHM) as well as hippocampal NSC have innate immunity-like actions against these RNA viruses. These extracellular vesicles also have a cell-free innate antiviral action by attacking and degrading viruses. We further generated the induced versions of Ex/Mv through prior viral exposure to NSCs and found that these induced Ex/Mv were stronger than basal Ex/Mv in reducing the infection of these viruses, suggesting the involvement of an adaptive immunity-like antiviral function. These NSC Ex/Mv were found to be characterized by producing large libraries of P element-induced wimpy testis (PIWI)-interacting RNAs (piRNAs) against genomes of various viruses, and some of these piRNAs were enriched during the adaptive immunity-like reaction, possibly contributing to the antiviral effects of these Ex/Mv. In conclusion, NSC Ex/Mv have antiviral immunity and could potentially be developed to combat against various viruses.