Cargando…
A Comparison Study of Machine Learning (Random Survival Forest) and Classic Statistic (Cox Proportional Hazards) for Predicting Progression in High-Grade Glioma after Proton and Carbon Ion Radiotherapy
BACKGROUND: Machine learning (ML) algorithms are increasingly explored in glioma prognostication. Random survival forest (RSF) is a common ML approach in analyzing time-to-event survival data. However, it is controversial which method between RSF and traditional cornerstone method Cox proportional h...
Autores principales: | Qiu, Xianxin, Gao, Jing, Yang, Jing, Hu, Jiyi, Hu, Weixu, Kong, Lin, Lu, Jiade J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7662123/ https://www.ncbi.nlm.nih.gov/pubmed/33194609 http://dx.doi.org/10.3389/fonc.2020.551420 |
Ejemplares similares
-
Perfusion MR prior to radiotherapy is a strong predictor of survival in high-grade gliomas after proton and carbon ion radiotherapy
por: Qiu, Xianxin, et al.
Publicado: (2022) -
Carbon-ion radiotherapy boost with standard dose proton radiation for incomplete-resected high-grade glioma: a phase 1 study
por: Qiu, Xianxin, et al.
Publicado: (2022) -
Comparison of the efficacy and toxicity of postoperative proton versus carbon ion radiotherapy for head and neck cancers
por: Huang, Qingting, et al.
Publicado: (2022) -
Particle radiation therapy in the management of malignant glioma: Early experience at the Shanghai Proton and Heavy Ion Center
por: Kong, Lin, et al.
Publicado: (2020) -
Outcomes of orbital malignancies treated with eye-sparing surgery and adjuvant particle radiotherapy: a retrospective study
por: Hu, Weixu, et al.
Publicado: (2019)