Cargando…
Blade Rub-Impact Fault Identification Using Autoencoder-Based Nonlinear Function Approximation and a Deep Neural Network
A blade rub-impact fault is one of the complex and frequently appearing faults in turbines. Due to their nonlinear and nonstationary nature, complex signal analysis techniques, which are expensive in terms of computation time, are required to extract valuable fault information from the vibration sig...
Autores principales: | Prosvirin, Alexander E., Piltan, Farzin, Kim, Jong-Myon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7662213/ https://www.ncbi.nlm.nih.gov/pubmed/33153120 http://dx.doi.org/10.3390/s20216265 |
Ejemplares similares
-
A Deep Autoencoder-Based Convolution Neural Network Framework for Bearing Fault Classification in Induction Motors
por: Toma, Rafia Nishat, et al.
Publicado: (2021) -
Deep Learning-Based Adaptive Neural-Fuzzy Structure Scheme for Bearing Fault Pattern Recognition and Crack Size Identification
por: Piltan, Farzin, et al.
Publicado: (2021) -
Bearing Fault Diagnosis Using a Hybrid Fuzzy V-Structure Fault Estimator Scheme
por: Piltan, Farzin, et al.
Publicado: (2023) -
Construction of a Sensitive and Speed Invariant Gearbox Fault Diagnosis Model Using an Incorporated Utilizing Adaptive Noise Control and a Stacked Sparse Autoencoder-Based Deep Neural Network
por: Nguyen, Cong Dai, et al.
Publicado: (2020) -
Rub-Impact Fault Diagnosis Using an Effective IMF Selection Technique in Ensemble Empirical Mode Decomposition and Hybrid Feature Models
por: Prosvirin, Alexander E., et al.
Publicado: (2018)