Cargando…
Lightweight and Resource-Constrained Learning Network for Face Recognition with Performance Optimization
Despite considerable progress in face recognition technology in recent years, deep learning (DL) and convolutional neural networks (CNN) have revealed commendable recognition effects with the advent of artificial intelligence and big data. FaceNet was presented in 2015 and is able to significantly i...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7662273/ https://www.ncbi.nlm.nih.gov/pubmed/33121101 http://dx.doi.org/10.3390/s20216114 |
_version_ | 1783609361677942784 |
---|---|
author | Li, Hsiao-Chi Deng, Zong-Yue Chiang, Hsin-Han |
author_facet | Li, Hsiao-Chi Deng, Zong-Yue Chiang, Hsin-Han |
author_sort | Li, Hsiao-Chi |
collection | PubMed |
description | Despite considerable progress in face recognition technology in recent years, deep learning (DL) and convolutional neural networks (CNN) have revealed commendable recognition effects with the advent of artificial intelligence and big data. FaceNet was presented in 2015 and is able to significantly improve the accuracy of face recognition, while also being powerfully built to counteract several common issues, such as occlusion, blur, illumination change, and different angles of head pose. However, not all hardware can sustain the heavy computing load in the execution of the FaceNet model. In applications in the security industry, lightweight and efficient face recognition are two key points for facilitating the deployment of DL and CNN models directly in field devices, due to their limited edge computing capability and low equipment cost. To this end, this paper provides a lightweight learning network improved from FaceNet, which is called FN13, to break through the hardware limitation of constrained computational resources. The proposed FN13 takes the advantage of center loss to reduce the variations of the between-class features and enlarge the difference of the within-class features, instead of the triplet loss by using FaceNet. The resulting model reduces the number of parameters and maintains a high degree of accuracy, only requiring few grayscale reference images per subject. The validity of FN13 is demonstrated by conducting experiments on the Labeled Faces in the Wild (LFW) dataset, as well as an analytical discussion regarding specific disguise problems. |
format | Online Article Text |
id | pubmed-7662273 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-76622732020-11-14 Lightweight and Resource-Constrained Learning Network for Face Recognition with Performance Optimization Li, Hsiao-Chi Deng, Zong-Yue Chiang, Hsin-Han Sensors (Basel) Article Despite considerable progress in face recognition technology in recent years, deep learning (DL) and convolutional neural networks (CNN) have revealed commendable recognition effects with the advent of artificial intelligence and big data. FaceNet was presented in 2015 and is able to significantly improve the accuracy of face recognition, while also being powerfully built to counteract several common issues, such as occlusion, blur, illumination change, and different angles of head pose. However, not all hardware can sustain the heavy computing load in the execution of the FaceNet model. In applications in the security industry, lightweight and efficient face recognition are two key points for facilitating the deployment of DL and CNN models directly in field devices, due to their limited edge computing capability and low equipment cost. To this end, this paper provides a lightweight learning network improved from FaceNet, which is called FN13, to break through the hardware limitation of constrained computational resources. The proposed FN13 takes the advantage of center loss to reduce the variations of the between-class features and enlarge the difference of the within-class features, instead of the triplet loss by using FaceNet. The resulting model reduces the number of parameters and maintains a high degree of accuracy, only requiring few grayscale reference images per subject. The validity of FN13 is demonstrated by conducting experiments on the Labeled Faces in the Wild (LFW) dataset, as well as an analytical discussion regarding specific disguise problems. MDPI 2020-10-27 /pmc/articles/PMC7662273/ /pubmed/33121101 http://dx.doi.org/10.3390/s20216114 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Li, Hsiao-Chi Deng, Zong-Yue Chiang, Hsin-Han Lightweight and Resource-Constrained Learning Network for Face Recognition with Performance Optimization |
title | Lightweight and Resource-Constrained Learning Network for Face Recognition with Performance Optimization |
title_full | Lightweight and Resource-Constrained Learning Network for Face Recognition with Performance Optimization |
title_fullStr | Lightweight and Resource-Constrained Learning Network for Face Recognition with Performance Optimization |
title_full_unstemmed | Lightweight and Resource-Constrained Learning Network for Face Recognition with Performance Optimization |
title_short | Lightweight and Resource-Constrained Learning Network for Face Recognition with Performance Optimization |
title_sort | lightweight and resource-constrained learning network for face recognition with performance optimization |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7662273/ https://www.ncbi.nlm.nih.gov/pubmed/33121101 http://dx.doi.org/10.3390/s20216114 |
work_keys_str_mv | AT lihsiaochi lightweightandresourceconstrainedlearningnetworkforfacerecognitionwithperformanceoptimization AT dengzongyue lightweightandresourceconstrainedlearningnetworkforfacerecognitionwithperformanceoptimization AT chianghsinhan lightweightandresourceconstrainedlearningnetworkforfacerecognitionwithperformanceoptimization |