Cargando…
Convolution Kernel Operations on a Two-Dimensional Spin Memristor Cross Array
In recent years, convolution operations often consume a lot of time and energy in deep learning algorithms, and convolution is usually used to remove noise or extract the edges of an image. However, under data-intensive conditions, frequent operations of the above algorithms will cause a significant...
Autores principales: | Zhu, Saike, Wang, Lidan, Dong, Zhekang, Duan, Shukai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7662316/ https://www.ncbi.nlm.nih.gov/pubmed/33142866 http://dx.doi.org/10.3390/s20216229 |
Ejemplares similares
-
Generative complex networks within a dynamic memristor with intrinsic variability
por: Guo, Yunpeng, et al.
Publicado: (2023) -
A Novel Memristive Multilayer Feedforward Small-World Neural Network with Its Applications in PID Control
por: Dong, Zhekang, et al.
Publicado: (2014) -
Time-varying data processing with nonvolatile memristor-based temporal kernel
por: Jang, Yoon Ho, et al.
Publicado: (2021) -
Long-Term Accuracy Enhancement of Binary Neural Networks Based on Optimized Three-Dimensional Memristor Array
por: Yu, Jie, et al.
Publicado: (2022) -
Research progress on solutions to the sneak path issue in memristor crossbar arrays
por: Shi, Lingyun, et al.
Publicado: (2020)