Cargando…

Third-Generation Cephalosporin-Loaded Chitosan Used to Limit Microorganisms Resistance

From their discovery, antibiotics have significantly improved clinical treatments of infections, thus leading to diminishing morbidity and mortality in critical care patients, as well as surgical, transplant and other types of medical procedures. In contemporary medicine, a significant debate regard...

Descripción completa

Detalles Bibliográficos
Autores principales: Duceac, Letiția Doina, Calin, Gabriela, Eva, Lucian, Marcu, Constantin, Bogdan Goroftei, Elena Roxana, Dabija, Marius Gabriel, Mitrea, Geta, Luca, Alina Costina, Hanganu, Elena, Gutu, Cristian, Stafie, Liviu, Banu, Elena Ariela, Grierosu, Carmen, Iordache, Alin Constantin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7662494/
https://www.ncbi.nlm.nih.gov/pubmed/33120990
http://dx.doi.org/10.3390/ma13214792
Descripción
Sumario:From their discovery, antibiotics have significantly improved clinical treatments of infections, thus leading to diminishing morbidity and mortality in critical care patients, as well as surgical, transplant and other types of medical procedures. In contemporary medicine, a significant debate regarding the development of multi-drug resistance involves all types of pathogens, especially in acute care hospitals due to suboptimal or inappropriate therapy. The possibility of nanotechnology using nanoparticles as matrices to encapsulate a lot of active molecules should increase drug efficacy, limit adverse effects and be an alternative helping to combat antibiotic resistance. The major aim of this study was to obtain and to analyze physico-chemical features of chitosan used as a drug-delivery system in order to stop the antibiotic resistance of different pathogens. It is well known that World Health Organization stated that multidrug resistance is one of the most important health threats worldwide. In last few years, nano-medicine emerged as an improved therapy to combat antibiotic-resistant infections agents. This work relies on enhancement of the antimicrobial efficiency of ceftriaxone against gram(+) and gram(−) bacteria by antibiotic encapsulation into chitosan nanoparticles. Physicochemical features of ceftriaxone-loaded polymer nanoparticles were investigated by particle size distribution and zeta potential, Fourier-transform infrared spectroscopy (FTIR), Thermal Gravimetric Analysis (TG/TGA), Scanning Electron Microscopy (SEM) characteristics techniques. The obtained results revealed an average particle size of 250 nm and a zeta potential value of 38.5 mV. The release profile indicates an incipient drug deliverance of almost 15%, after 2 h of approximately 83%, followed by a slowed drug release up to 24 h. Characteristics peaks of chitosan were confirmed by FTIR spectra indicating a similar structure in the case of ceftriaxone-loaded chitosan nanoparticles. A good encapsulation of the antibiotic into chitosan nanoparticles was also provided by thermo-gravimetric analysis. Morphological characteristics shown by SEM micrographs exhibit spherical nanoparticles of 30–250 nm in size with agglomerated architectures. Chitosan, a natural polymer which is used to load different drugs, provides sustained and prolonged release of antibiotics at a specific target by possessing antimicrobial activity against gram(+) and gram(−) bacteria. In this research, ceftriaxone-loaded chitosan nanoparticles were investigated as a carrier in antibiotic delivery.