Cargando…
MRI Radiomic Features to Predict IDH1 Mutation Status in Gliomas: A Machine Learning Approach using Gradient Tree Boosting
In patients with gliomas, isocitrate dehydrogenase 1 (IDH1) mutation status has been studied as a prognostic indicator. Recent advances in machine learning (ML) have demonstrated promise in utilizing radiomic features to study disease processes in the brain. We investigate whether ML analysis of mul...
Autores principales: | Sakai, Yu, Yang, Chen, Kihira, Shingo, Tsankova, Nadejda, Khan, Fahad, Hormigo, Adilia, Lai, Albert, Cloughesy, Timothy, Nael, Kambiz |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7662499/ https://www.ncbi.nlm.nih.gov/pubmed/33121211 http://dx.doi.org/10.3390/ijms21218004 |
Ejemplares similares
-
Multiparametric MRI texture analysis in prediction of glioma biomarker status: added value of MR diffusion
por: Kihira, Shingo, et al.
Publicado: (2021) -
Multi-Parametric Radiomic Model to Predict 1p/19q Co-Deletion in Patients with IDH-1 Mutant Glioma: Added Value to the T2-FLAIR Mismatch Sign
por: Kihira, Shingo, et al.
Publicado: (2023) -
U-Net Based Segmentation and Characterization of Gliomas
por: Kihira, Shingo, et al.
Publicado: (2022) -
Tumoral and immune heterogeneity in an anti-PD-1-responsive glioblastoma: a case study
por: Restrepo, Paula, et al.
Publicado: (2020) -
Multicenter DSC–MRI-Based Radiomics Predict IDH Mutation in Gliomas
por: Manikis, Georgios C., et al.
Publicado: (2021)