Cargando…

Are Metal Ions That Make up Orthodontic Alloys Cytotoxic, and Do They Induce Oxidative Stress in a Yeast Cell Model?

Compositions of stainless steel, nickel-titanium, cobalt-chromium and β-titanium orthodontic alloys were simulated with mixtures of Fe, Ni, Cr, Co, Ti and Mo metal ions as potential oxidative stress-triggering agents. Wild-type yeast Saccharomyces cerevisiae and two mutants ΔSod1 and ΔCtt1 were used...

Descripción completa

Detalles Bibliográficos
Autores principales: Kovač, Vito, Poljšak, Borut, Primožič, Jasmina, Jamnik, Polona
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7662645/
https://www.ncbi.nlm.nih.gov/pubmed/33121155
http://dx.doi.org/10.3390/ijms21217993
Descripción
Sumario:Compositions of stainless steel, nickel-titanium, cobalt-chromium and β-titanium orthodontic alloys were simulated with mixtures of Fe, Ni, Cr, Co, Ti and Mo metal ions as potential oxidative stress-triggering agents. Wild-type yeast Saccharomyces cerevisiae and two mutants ΔSod1 and ΔCtt1 were used as model organisms to assess the cytotoxicity and oxidative stress occurrence. Metal mixtures at concentrations of 1, 10, 100 and 1000 µM were prepared out of metal chlorides and used to treat yeast cells for 24 h. Every simulated orthodontic alloy at 1000 µM was cytotoxic, and, in the case of cobalt-chromium alloy, even 100 µM was cytotoxic. Reactive oxygen species and oxidative damage were detected for stainless steel and both cobalt-chromium alloys at 1000 µM in wild-type yeast and 100 µM in the ΔSod1 and ΔCtt1 mutants. Simulated nickel-titanium and β-titanium alloy did not induce oxidative stress in any of the tested strains.