Cargando…

A Review on Lead-Free Hybrid Halide Perovskites as Light Absorbers for Photovoltaic Applications Based on Their Structural, Optical, and Morphological Properties

Despite the advancement made by the scientific community in the evolving photovoltaic technologies, including the achievement of a 29.1% power conversion efficiency of perovskite solar cells over the past two decades, there are still numerous challenges facing the advancement of lead-based halide pe...

Descripción completa

Detalles Bibliográficos
Autores principales: Adjogri, Shadrack J., Meyer, Edson L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7662694/
https://www.ncbi.nlm.nih.gov/pubmed/33143007
http://dx.doi.org/10.3390/molecules25215039
Descripción
Sumario:Despite the advancement made by the scientific community in the evolving photovoltaic technologies, including the achievement of a 29.1% power conversion efficiency of perovskite solar cells over the past two decades, there are still numerous challenges facing the advancement of lead-based halide perovskite absorbers for perovskite photovoltaic applications. Among the numerous challenges, the major concern is centered around the toxicity of the emerging lead-based halide perovskite absorbers, thereby leading to drawbacks for their pragmatic application and commercialization. Hence, the replacement of lead in the perovskite material with non-hazardous metal has become the central focus for the actualization of hybrid perovskite technology. This review focuses on lead-free hybrid halide perovskites as light absorbers with emphasis on how their chemical compositions influence optical properties, morphological properties, and to a certain extent, the stability of these perovskite materials.