Cargando…
Growth and Photosynthetic Activity of Selected Spelt Varieties (Triticum aestivum ssp. spelta L.) Cultivated under Drought Conditions with Different Endophytic Core Microbiomes
The role of the microbiome in the root zone is critically important for plants. However, the mechanism by which plants can adapt to environmental constraints, especially water deficit, has not been fully investigated to date, while the endophytic core microbiome of the roots of spelt (Triticum aesti...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7662716/ https://www.ncbi.nlm.nih.gov/pubmed/33121138 http://dx.doi.org/10.3390/ijms21217987 |
_version_ | 1783609461243379712 |
---|---|
author | Ratajczak, Karolina Sulewska, Hanna Błaszczyk, Lidia Basińska-Barczak, Aneta Mikołajczak, Katarzyna Salamon, Sylwia Szymańska, Grażyna Dryjański, Leszek |
author_facet | Ratajczak, Karolina Sulewska, Hanna Błaszczyk, Lidia Basińska-Barczak, Aneta Mikołajczak, Katarzyna Salamon, Sylwia Szymańska, Grażyna Dryjański, Leszek |
author_sort | Ratajczak, Karolina |
collection | PubMed |
description | The role of the microbiome in the root zone is critically important for plants. However, the mechanism by which plants can adapt to environmental constraints, especially water deficit, has not been fully investigated to date, while the endophytic core microbiome of the roots of spelt (Triticum aestivum ssp. spelta L.) grown under drought conditions has received little attention. In this study, we hypothesize that differences in the endophytic core of spelt and common wheat root microbiomes can explain the variations in the growth and photosynthetic activity of those plants, especially under drought conditions. Our greenhouse experimental design was completely randomized in a 2 × 4 × 3 factorial scheme: two water regime levels (well-watered and drought), three spelt varieties (T. aestivum ssp. spelta L.: ‘Badenstern’, ‘Badenkrone’ and ‘Zollernspelz’ and one wheat variety: T. aestivum ssp. vulgare L: ‘Dakotana’) and three mycorrhizal levels (autoclaved soil inoculation with Rhizophagus irregularis, control (autoclaved soil) and natural inoculation (non-autoclaved soil—microorganisms from the field). During the imposed stress period, relative water content (RWC), leaf chlorophyll fluorescence, gas exchange and water use efficiency (WUE) were measured. Microscopic observations of the root surface through fungi isolation and identification were conducted. Our results indicate that ‘Badenstern’ was the most drought tolerant variety, followed by ‘Zollernspelz’ and ‘Badenkrone,’ while the common wheat variety ‘Dakotana’ was the most drought sensitive. Inoculation of ‘Badenstern’ with the mycorrhizal fungi R. irregularis contributed to better growth performance as evidenced by increased whole plant and stalk dry matter accumulation, as well as greater root length and volume. Inoculation of ‘Zollernspelz’ with arbuscular mycorrhizal fungi (AMF) enhanced the photochemical efficiency of Photosystem II and significantly improved root growth under drought conditions, which was confirmed by enhanced aboveground biomass, root dry weight and length. This study provides evidence that AMF have the potential to be beneficial for plant growth and dry matter accumulation in spelt varieties grown under drought conditions. |
format | Online Article Text |
id | pubmed-7662716 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-76627162020-11-14 Growth and Photosynthetic Activity of Selected Spelt Varieties (Triticum aestivum ssp. spelta L.) Cultivated under Drought Conditions with Different Endophytic Core Microbiomes Ratajczak, Karolina Sulewska, Hanna Błaszczyk, Lidia Basińska-Barczak, Aneta Mikołajczak, Katarzyna Salamon, Sylwia Szymańska, Grażyna Dryjański, Leszek Int J Mol Sci Article The role of the microbiome in the root zone is critically important for plants. However, the mechanism by which plants can adapt to environmental constraints, especially water deficit, has not been fully investigated to date, while the endophytic core microbiome of the roots of spelt (Triticum aestivum ssp. spelta L.) grown under drought conditions has received little attention. In this study, we hypothesize that differences in the endophytic core of spelt and common wheat root microbiomes can explain the variations in the growth and photosynthetic activity of those plants, especially under drought conditions. Our greenhouse experimental design was completely randomized in a 2 × 4 × 3 factorial scheme: two water regime levels (well-watered and drought), three spelt varieties (T. aestivum ssp. spelta L.: ‘Badenstern’, ‘Badenkrone’ and ‘Zollernspelz’ and one wheat variety: T. aestivum ssp. vulgare L: ‘Dakotana’) and three mycorrhizal levels (autoclaved soil inoculation with Rhizophagus irregularis, control (autoclaved soil) and natural inoculation (non-autoclaved soil—microorganisms from the field). During the imposed stress period, relative water content (RWC), leaf chlorophyll fluorescence, gas exchange and water use efficiency (WUE) were measured. Microscopic observations of the root surface through fungi isolation and identification were conducted. Our results indicate that ‘Badenstern’ was the most drought tolerant variety, followed by ‘Zollernspelz’ and ‘Badenkrone,’ while the common wheat variety ‘Dakotana’ was the most drought sensitive. Inoculation of ‘Badenstern’ with the mycorrhizal fungi R. irregularis contributed to better growth performance as evidenced by increased whole plant and stalk dry matter accumulation, as well as greater root length and volume. Inoculation of ‘Zollernspelz’ with arbuscular mycorrhizal fungi (AMF) enhanced the photochemical efficiency of Photosystem II and significantly improved root growth under drought conditions, which was confirmed by enhanced aboveground biomass, root dry weight and length. This study provides evidence that AMF have the potential to be beneficial for plant growth and dry matter accumulation in spelt varieties grown under drought conditions. MDPI 2020-10-27 /pmc/articles/PMC7662716/ /pubmed/33121138 http://dx.doi.org/10.3390/ijms21217987 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Ratajczak, Karolina Sulewska, Hanna Błaszczyk, Lidia Basińska-Barczak, Aneta Mikołajczak, Katarzyna Salamon, Sylwia Szymańska, Grażyna Dryjański, Leszek Growth and Photosynthetic Activity of Selected Spelt Varieties (Triticum aestivum ssp. spelta L.) Cultivated under Drought Conditions with Different Endophytic Core Microbiomes |
title | Growth and Photosynthetic Activity of Selected Spelt Varieties (Triticum aestivum ssp. spelta L.) Cultivated under Drought Conditions with Different Endophytic Core Microbiomes |
title_full | Growth and Photosynthetic Activity of Selected Spelt Varieties (Triticum aestivum ssp. spelta L.) Cultivated under Drought Conditions with Different Endophytic Core Microbiomes |
title_fullStr | Growth and Photosynthetic Activity of Selected Spelt Varieties (Triticum aestivum ssp. spelta L.) Cultivated under Drought Conditions with Different Endophytic Core Microbiomes |
title_full_unstemmed | Growth and Photosynthetic Activity of Selected Spelt Varieties (Triticum aestivum ssp. spelta L.) Cultivated under Drought Conditions with Different Endophytic Core Microbiomes |
title_short | Growth and Photosynthetic Activity of Selected Spelt Varieties (Triticum aestivum ssp. spelta L.) Cultivated under Drought Conditions with Different Endophytic Core Microbiomes |
title_sort | growth and photosynthetic activity of selected spelt varieties (triticum aestivum ssp. spelta l.) cultivated under drought conditions with different endophytic core microbiomes |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7662716/ https://www.ncbi.nlm.nih.gov/pubmed/33121138 http://dx.doi.org/10.3390/ijms21217987 |
work_keys_str_mv | AT ratajczakkarolina growthandphotosyntheticactivityofselectedspeltvarietiestriticumaestivumsspspeltalcultivatedunderdroughtconditionswithdifferentendophyticcoremicrobiomes AT sulewskahanna growthandphotosyntheticactivityofselectedspeltvarietiestriticumaestivumsspspeltalcultivatedunderdroughtconditionswithdifferentendophyticcoremicrobiomes AT błaszczyklidia growthandphotosyntheticactivityofselectedspeltvarietiestriticumaestivumsspspeltalcultivatedunderdroughtconditionswithdifferentendophyticcoremicrobiomes AT basinskabarczakaneta growthandphotosyntheticactivityofselectedspeltvarietiestriticumaestivumsspspeltalcultivatedunderdroughtconditionswithdifferentendophyticcoremicrobiomes AT mikołajczakkatarzyna growthandphotosyntheticactivityofselectedspeltvarietiestriticumaestivumsspspeltalcultivatedunderdroughtconditionswithdifferentendophyticcoremicrobiomes AT salamonsylwia growthandphotosyntheticactivityofselectedspeltvarietiestriticumaestivumsspspeltalcultivatedunderdroughtconditionswithdifferentendophyticcoremicrobiomes AT szymanskagrazyna growthandphotosyntheticactivityofselectedspeltvarietiestriticumaestivumsspspeltalcultivatedunderdroughtconditionswithdifferentendophyticcoremicrobiomes AT dryjanskileszek growthandphotosyntheticactivityofselectedspeltvarietiestriticumaestivumsspspeltalcultivatedunderdroughtconditionswithdifferentendophyticcoremicrobiomes |