Cargando…
Learning Three Dimensional Tennis Shots Using Graph Convolutional Networks
Human movement analysis is very often applied to sport, which has seen great achievements in assessing an athlete’s progress, giving further training tips and in movement recognition. In tennis, there are two basic shots: forehand and backhand, which are performed during all matches and training ses...
Autores principales: | Skublewska-Paszkowska, Maria, Powroznik, Pawel, Lukasik, Edyta |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7662764/ https://www.ncbi.nlm.nih.gov/pubmed/33120904 http://dx.doi.org/10.3390/s20216094 |
Ejemplares similares
-
Temporal Pattern Attention for Multivariate Time Series of Tennis Strokes Classification
por: Skublewska-Paszkowska, Maria, et al.
Publicado: (2023) -
3D technologies for intangible cultural heritage preservation—literature review for selected databases
por: Skublewska-Paszkowska, Maria, et al.
Publicado: (2022) -
Zero-Shot Action Recognition with Three-Stream Graph Convolutional Networks †
por: Wu, Nan, et al.
Publicado: (2021) -
Bioelectrical Activity of Vastus Medialis and Rectus Femoris Muscles in Recreational Runners with Anterior Knee Pain
por: Gawda, Piotr, et al.
Publicado: (2019) -
Sex-dependent differences in single-leg squat kinematics and their relationship to squat depth in physically active individuals
por: Zawadka, Magdalena, et al.
Publicado: (2020)