Cargando…
Robust Metallic Nanolaminates Having Phonon-Glass Thermal Conductivity
Heat transfer phenomena in multilayer structures have gained interest due to their promising use in thermal insulation and thermoelectricity applications. In such systems, nanostructuring has been used to introduce moderate interfacial density, and it has been demonstrated that interfacial thermal r...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7662775/ https://www.ncbi.nlm.nih.gov/pubmed/33158127 http://dx.doi.org/10.3390/ma13214954 |
_version_ | 1783609474966093824 |
---|---|
author | García-Pastor, Francisco Alfredo Montelongo-Vega, Josué Benjamín Tovar-Padilla, Marco Vinicio Cardona-Castro, María Antonia Alvarez-Quintana, Jaime |
author_facet | García-Pastor, Francisco Alfredo Montelongo-Vega, Josué Benjamín Tovar-Padilla, Marco Vinicio Cardona-Castro, María Antonia Alvarez-Quintana, Jaime |
author_sort | García-Pastor, Francisco Alfredo |
collection | PubMed |
description | Heat transfer phenomena in multilayer structures have gained interest due to their promising use in thermal insulation and thermoelectricity applications. In such systems, nanostructuring has been used to introduce moderate interfacial density, and it has been demonstrated that interfacial thermal resistance plays a crucial role in reducing thermal conductivity κ. Nevertheless, the main constraint for actual applications is related to their tiny size because they are extremely thin to establish appreciable temperature gradients. In this work, by severe plastic deformation process of accumulative roll bonding (ARB), a 250 µm thick Cu-Nb multilayer containing more than 8000 interfaces with periods below 40 nm was obtained, enabling the production of bulk metallic nanolaminates with ultralow κ. Multilayers present an ultralow κ of ∼0.81 W/mK at 300 K, which is 100 times smaller than its Cu-Nb bulk counterpart, and even lower than the amorphous lattice limit for the Cu-Nb thin film system. By using electron diffusive mismatch model (EDMM), we argue that both electrons diffusively scattering at interface and those ballistically crossing the constituents are responsible for heat conduction in the Cu-Nb multilayers at nanoscale. Hence, ARB Cu-Nb multilayers are intriguing candidate materials which can prove avenues to achieve stable ultralow κ thermal barriers for robust applications. |
format | Online Article Text |
id | pubmed-7662775 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-76627752020-11-14 Robust Metallic Nanolaminates Having Phonon-Glass Thermal Conductivity García-Pastor, Francisco Alfredo Montelongo-Vega, Josué Benjamín Tovar-Padilla, Marco Vinicio Cardona-Castro, María Antonia Alvarez-Quintana, Jaime Materials (Basel) Article Heat transfer phenomena in multilayer structures have gained interest due to their promising use in thermal insulation and thermoelectricity applications. In such systems, nanostructuring has been used to introduce moderate interfacial density, and it has been demonstrated that interfacial thermal resistance plays a crucial role in reducing thermal conductivity κ. Nevertheless, the main constraint for actual applications is related to their tiny size because they are extremely thin to establish appreciable temperature gradients. In this work, by severe plastic deformation process of accumulative roll bonding (ARB), a 250 µm thick Cu-Nb multilayer containing more than 8000 interfaces with periods below 40 nm was obtained, enabling the production of bulk metallic nanolaminates with ultralow κ. Multilayers present an ultralow κ of ∼0.81 W/mK at 300 K, which is 100 times smaller than its Cu-Nb bulk counterpart, and even lower than the amorphous lattice limit for the Cu-Nb thin film system. By using electron diffusive mismatch model (EDMM), we argue that both electrons diffusively scattering at interface and those ballistically crossing the constituents are responsible for heat conduction in the Cu-Nb multilayers at nanoscale. Hence, ARB Cu-Nb multilayers are intriguing candidate materials which can prove avenues to achieve stable ultralow κ thermal barriers for robust applications. MDPI 2020-11-04 /pmc/articles/PMC7662775/ /pubmed/33158127 http://dx.doi.org/10.3390/ma13214954 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article García-Pastor, Francisco Alfredo Montelongo-Vega, Josué Benjamín Tovar-Padilla, Marco Vinicio Cardona-Castro, María Antonia Alvarez-Quintana, Jaime Robust Metallic Nanolaminates Having Phonon-Glass Thermal Conductivity |
title | Robust Metallic Nanolaminates Having Phonon-Glass Thermal Conductivity |
title_full | Robust Metallic Nanolaminates Having Phonon-Glass Thermal Conductivity |
title_fullStr | Robust Metallic Nanolaminates Having Phonon-Glass Thermal Conductivity |
title_full_unstemmed | Robust Metallic Nanolaminates Having Phonon-Glass Thermal Conductivity |
title_short | Robust Metallic Nanolaminates Having Phonon-Glass Thermal Conductivity |
title_sort | robust metallic nanolaminates having phonon-glass thermal conductivity |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7662775/ https://www.ncbi.nlm.nih.gov/pubmed/33158127 http://dx.doi.org/10.3390/ma13214954 |
work_keys_str_mv | AT garciapastorfranciscoalfredo robustmetallicnanolaminateshavingphononglassthermalconductivity AT montelongovegajosuebenjamin robustmetallicnanolaminateshavingphononglassthermalconductivity AT tovarpadillamarcovinicio robustmetallicnanolaminateshavingphononglassthermalconductivity AT cardonacastromariaantonia robustmetallicnanolaminateshavingphononglassthermalconductivity AT alvarezquintanajaime robustmetallicnanolaminateshavingphononglassthermalconductivity |