Cargando…

Self-Assembly of Asymmetrically Functionalized Titania Nanoparticles into Nanoshells

Titania (anatase) nanoparticles were anisotropically functionalized in water-toluene Pickering emulsions to self-assemble into nanoshells with diameters from 500 nm to 3 μm as candidates for encapsulation of drugs and other compounds. The water-phase contained a hydrophilic ligand, glucose-6-phospha...

Descripción completa

Detalles Bibliográficos
Autores principales: Svensson, Fredric G., Seisenbaeva, Gulaim A., Kotov, Nicholas A., Kessler, Vadim G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7662802/
https://www.ncbi.nlm.nih.gov/pubmed/33138284
http://dx.doi.org/10.3390/ma13214856
Descripción
Sumario:Titania (anatase) nanoparticles were anisotropically functionalized in water-toluene Pickering emulsions to self-assemble into nanoshells with diameters from 500 nm to 3 μm as candidates for encapsulation of drugs and other compounds. The water-phase contained a hydrophilic ligand, glucose-6-phosphate, while the toluene-phase contained a hydrophobic ligand, n-dodecylphosphonic acid. The addition of a dilute sodium alginate suspension that provided electrostatic charge was essential for the self-limited assembly of the nanoshells. The self-assembled spheres were characterized by scanning electron microscopy, elemental mapping, and atomic force microscopy. Drug release studies using tetracycline suggest a rapid release dominated by surface desorption.