Cargando…

Antibacterial and Anti-Fungal Biological Activities for Acrylonitrile, Acrylamide and 2-Acrylamido-2-Methylpropane Sulphonic Acid Crosslinked Terpolymers

There is a pressing demand to synthesize polymers that have antibacterial and antifungal properties. The aim of this study was to synthesize a crosslinked hydrophilic terpolymer with acrylamide, acrylonitrile, acrylic acid, acrylamido-2-methylpropane sulphonic acid and ethylene glycol dimethacrylate...

Descripción completa

Detalles Bibliográficos
Autores principales: Farag, Reem K., Atta, Ayman M., Labena, Ahmed, AlHawari, Salma H., Safwat, Gehan, Diab, Ayman
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7662814/
https://www.ncbi.nlm.nih.gov/pubmed/33143385
http://dx.doi.org/10.3390/ma13214891
Descripción
Sumario:There is a pressing demand to synthesize polymers that have antibacterial and antifungal properties. The aim of this study was to synthesize a crosslinked hydrophilic terpolymer with acrylamide, acrylonitrile, acrylic acid, acrylamido-2-methylpropane sulphonic acid and ethylene glycol dimethacrylate as a crosslinker. The chemical structure and thermal stability of the prepared cross-linked terpolymers were confirmed by spectroscopic and thermal analyses. Moreover, the swelling experiments were performed to investigate their swelling capacity. Furthermore, the efficiency of the synthesized cross-linked polymer gels was assessed as an antimicrobial agent against Gram-positive, Gram-negative bacteria and fungal strains. The synthesized polymers showed broad inhibition effect, with more antibacterial activity by the AM4 polymer sample containing high percentage of acrylonitrile monomer in the prepared terpolymers (4 mol ratio of acrylic acid: 1 mol ratio of acrylamide: 16 mole ratio of acrylonitrile against Gram negative bacterial strain), while sample M3 terpolymer (1 mol ratio of acrylamide: 1 mole ratio acrylonitrile: 3 mole ratio of acrylamido-2-methylpropane sulphonic acid) showed a promising anti-fungal activity.