Cargando…
Direct Three-Dimensional Imaging of an X-ray Nanofocus Using a Single 60 nm Diameter Nanowire Device
[Image: see text] Nanoscale X-ray detectors could allow higher resolution in imaging and diffraction experiments than established systems but are difficult to design due to the long absorption length of X-rays. Here, we demonstrate X-ray detection in a single nanowire in which the nanowire axis is p...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2020
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7662902/ https://www.ncbi.nlm.nih.gov/pubmed/33084341 http://dx.doi.org/10.1021/acs.nanolett.0c03477 |
Sumario: | [Image: see text] Nanoscale X-ray detectors could allow higher resolution in imaging and diffraction experiments than established systems but are difficult to design due to the long absorption length of X-rays. Here, we demonstrate X-ray detection in a single nanowire in which the nanowire axis is parallel to the optical axis. In this geometry, X-ray absorption can occur along the nanowire length, while the spatial resolution is limited by the diameter. We use the device to make a high-resolution 3D image of the 88 nm diameter X-ray nanofocus at the Nanomax beamline, MAX IV synchrotron, by scanning the single pixel device in different planes along the optical axis. The images reveal fine details of the beam that are unattainable with established detectors and show good agreement with ptychography. |
---|