Cargando…
An Automated Pipeline for Image Processing and Data Treatment to Track Activity Rhythms of Paragorgia arborea in Relation to Hydrographic Conditions
Imaging technologies are being deployed on cabled observatory networks worldwide. They allow for the monitoring of the biological activity of deep-sea organisms on temporal scales that were never attained before. In this paper, we customized Convolutional Neural Network image processing to track beh...
Autores principales: | Zuazo, Ander, Grinyó, Jordi, López-Vázquez, Vanesa, Rodríguez, Erik, Costa, Corrado, Ortenzi, Luciano, Flögel, Sascha, Valencia, Javier, Marini, Simone, Zhang, Guosong, Wehde, Henning, Aguzzi, Jacopo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7662914/ https://www.ncbi.nlm.nih.gov/pubmed/33158174 http://dx.doi.org/10.3390/s20216281 |
Ejemplares similares
-
Lipidomic profiling reveals biosynthetic relationships between phospholipids and diacylglycerol ethers in the deep-sea soft coral Paragorgia arborea
por: Imbs, Andrey B., et al.
Publicado: (2021) -
A Flexible Autonomous Robotic Observatory Infrastructure for Bentho-Pelagic Monitoring †
por: Aguzzi, Jacopo, et al.
Publicado: (2020) -
A data science approach for multi-sensor marine observatory data monitoring cold water corals (Paragorgia arborea) in two campaigns
por: van Kevelaer, Robin, et al.
Publicado: (2023) -
Video Image Enhancement and Machine Learning Pipeline for Underwater Animal Detection and Classification at Cabled Observatories
por: Lopez-Vazquez, Vanesa, et al.
Publicado: (2020) -
Importance of long-term hydrographic monitoring
por: Salas Monreal, David, et al.
Publicado: (2021)