Cargando…

Underwater Ambiguity Elimination Method Based on Co-Prime Sensor Array

Recently, the direction of arrival estimation with co-prime arrays has gradually been applied in underwater scenarios because of its significant advantages over traditional uniform linear arrays. Despite the advantages of co-prime arrays, the spatial spectra obtained directly from conventional beamf...

Descripción completa

Detalles Bibliográficos
Autores principales: Lan, Tian, Wang, Yilin, Qiu, Longhao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7662939/
https://www.ncbi.nlm.nih.gov/pubmed/33114381
http://dx.doi.org/10.3390/s20216058
Descripción
Sumario:Recently, the direction of arrival estimation with co-prime arrays has gradually been applied in underwater scenarios because of its significant advantages over traditional uniform linear arrays. Despite the advantages of co-prime arrays, the spatial spectra obtained directly from conventional beamforming can be degraded by grating lobes due to the sparse spatial sampling in passive sensing applications, which will seriously deteriorate the estimation performance. In this paper, capon beamforming is applied to a co-prime sensor array as a pretreatment before high-resolution direction of arrival (DOA) estimation methods. The amplitudes extracted from the beam-domain outputs of two subarrays and the phases extracted from the cross-spectrum of the spatial spectrum are exploited to suppress the spurious peaks in beam patterns and eliminate ambiguities. Consequently, interference can be further mitigated, and the performance of high-resolution DOA methods will be guaranteed. Simulations show that the method proposed can improve the reliability and accuracy of DOA estimation with great value in practice.