Cargando…
Federated Learning in Smart City Sensing: Challenges and Opportunities
Smart Cities sensing is an emerging paradigm to facilitate the transition into smart city services. The advent of the Internet of Things (IoT) and the widespread use of mobile devices with computing and sensing capabilities has motivated applications that require data acquisition at a societal scale...
Autores principales: | Jiang, Ji Chu, Kantarci, Burak, Oktug, Sema, Soyata, Tolga |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7662977/ https://www.ncbi.nlm.nih.gov/pubmed/33142863 http://dx.doi.org/10.3390/s20216230 |
Ejemplares similares
-
Connected health in smart cities
por: El Saddik, Abdulmotaleb, et al.
Publicado: (2019) -
The Role of Advanced Sensing in Smart Cities
por: Hancke, Gerhard P., et al.
Publicado: (2012) -
Big data analytics and smart cities: applications, challenges, and opportunities
por: Cesario, Eugenio
Publicado: (2023) -
Cyber-Physical Systems and Smart Cities in India: Opportunities, Issues, and Challenges
por: Ahmad, Md. Onais, et al.
Publicado: (2021) -
Federated Compressed Learning Edge Computing Framework with Ensuring Data Privacy for PM2.5 Prediction in Smart City Sensing Applications
por: Putra, Karisma Trinanda, et al.
Publicado: (2021)