Cargando…
Structure and Rheological Properties of Glycerol Monolaurate-Induced Organogels: Influence of Hydrocolloids with Different Surface Charge
Organogel (OG) is a class of semi-solid gel, entrapping organic solvent within a three-dimensional network, which is formed via the self-assembly of organogelators. In the present study, OG was produced by glycerol monolaurate (GML) as organogelator. The influence of hydrocolloids with different sur...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7662997/ https://www.ncbi.nlm.nih.gov/pubmed/33158027 http://dx.doi.org/10.3390/molecules25215117 |
Sumario: | Organogel (OG) is a class of semi-solid gel, entrapping organic solvent within a three-dimensional network, which is formed via the self-assembly of organogelators. In the present study, OG was produced by glycerol monolaurate (GML) as organogelator. The influence of hydrocolloids with different surface charges (chitosan (CS), konjac glucomannan (KGM) and sodium alginate (SA)) on the physiochemical properties of OG was investigated. Rheological studies demonstrated that OG and pure hydrocolloid solution showed shear-thinning behavior. After incorporation of the hydrocolloid, the initial viscosity of OG was lowered from ~100 Pa·s to <10 Pa·s, and then the viscosity increased to more than 100 Pa·s at a low shear rate of 0.1–0.2 s(−1), which subsequently decreased with a higher shear rate. OGs in the presence of hydrocolloids still kept the thermo-sensitivity, while the melting point of the OG decreased with the incorporation of hydrocolloids. Hydrocolloid addition greatly shortened the gelling time of the OG from 21 min to less than 2 min. The presence of hydrocolloids increased the particle size of oil droplets in the molten OG. Some aggregation and coalescence of oil droplets occurred in the presence of positive-charged CS and negative-charged SA, respectively. After gelling, the gel structure converted into a biphasic-like network. Hydrocolloids improved the hardness, stickiness and the oil-holding stability of OGs by 18.8~33.9%. Overall, hydrocolloid incorporation could modulate the properties of OGs through their different surface charge properties. These novel OGs have potential as nutrient carriers or low-fat margarine alternatives and avoid the trans-fatty acid intake. |
---|