Cargando…
Predicting the Tool Wear of a Drilling Process Using Novel Machine Learning XGBoost-SDA
Tool wear negatively impacts the quality of workpieces produced by the drilling process. Accurate prediction of tool wear enables the operator to maintain the machine at the required level of performance. This research presents a novel hybrid machine learning approach for predicting the tool wear in...
Autores principales: | Alajmi, Mahdi S., Almeshal, Abdullah M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7663048/ https://www.ncbi.nlm.nih.gov/pubmed/33158099 http://dx.doi.org/10.3390/ma13214952 |
Ejemplares similares
-
Estimation and Optimization of Tool Wear in Conventional Turning of 709M40 Alloy Steel Using Support Vector Machine (SVM) with Bayesian Optimization
por: Alajmi, Mahdi S., et al.
Publicado: (2021) -
Prediction and Optimization of Surface Roughness in a Turning Process Using the ANFIS-QPSO Method
por: Alajmi, Mahdi S., et al.
Publicado: (2020) -
Immunity to Sda1 Protects against Infection by Sda1(+) and Sda1(−) Serotypes of Group A Streptococcus
por: Bi, Shuai, et al.
Publicado: (2022) -
XGBoost Machine Learning Algorithm for Prediction of Outcome in Aneurysmal Subarachnoid Hemorrhage
por: Wang, Ruoran, et al.
Publicado: (2022) -
Prediction of Greenhouse Tomato Crop Evapotranspiration Using XGBoost Machine Learning Model
por: Ge, Jiankun, et al.
Publicado: (2022)