Cargando…
Monitoring of PM(2.5) Concentrations by Learning from Multi-Weather Sensors
This paper aims to monitor the ambient level of particulate matter less than 2.5 [Formula: see text] m (PM [Formula: see text]) by learning from multi-weather sensors. Over the past decade, China has established a high-density network of automatic weather stations. In contrast, the number of PM moni...
Autores principales: | Wang, Yuexia, Xu, Zhihuo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7663137/ https://www.ncbi.nlm.nih.gov/pubmed/33114770 http://dx.doi.org/10.3390/s20216086 |
Ejemplares similares
-
Impact of PM2.5 concentration, weather and population on COVID-19 morbidity and mortality in Baghdad and Kuwait cities
por: Halos, Saadiyah H., et al.
Publicado: (2021) -
Fusion of Environmental Sensing on PM(2.5) and Deep Learning on Vehicle Detecting for Acquiring Roadside PM(2.5) Concentration Increments
por: Wang, Wen-Cheng Vincent, et al.
Publicado: (2020) -
Variability analysis in PM2.5 monitoring
por: Bhardwaj, Rashmi, et al.
Publicado: (2019) -
Spatiotemporal Patterns of Ground Monitored PM(2.5) Concentrations in China in Recent Years
por: Li, Junming, et al.
Publicado: (2018) -
An improved deep learning model for predicting daily PM2.5 concentration
por: Xiao, Fei, et al.
Publicado: (2020)